Direct Methane Conversion to Methanol. Annual Report, October 1, 1992--September 30, 1993

Direct Methane Conversion to Methanol. Annual Report, October 1, 1992--September 30, 1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description
We proposed to demonstrate the effectiveness of a catalytic membrane reactor (a ceramic membrane combined with a catalyst) to selectively produce methanol by partial oxidation of methane. Methanol is used as a chemical feedstock, gasoline additive, and turbine fuel. Methane partial oxidation using a catalytic membrane reactor has been determined as one of the promising approaches for methanol synthesis from methane. In the original proposal, the membrane was used to selectively remove methanol from the reaction zone before carbon oxides form, thus increasing the methanol yield. Methanol synthesis and separation in one step would also make methane more valuable for producing chemicals and fuels. The cooling tube inserted inside the membrane reactor has created a low temperature zone that rapidly quenches the product stream. This system has proved effective for increasing methanol selectivity during CH4 oxidation. The membranes broke during experiments, however, apparently because of the large radial thermal gradient and axial thermal expansion difference. Our efforts concentrated on improving the membrane lifetime by modifying this non-isothermal membrane reactor.

Direct Methane Conversion to Methanol. Annual Report, October 1, 1992--September 30, 1993

Direct Methane Conversion to Methanol. Annual Report, October 1, 1992--September 30, 1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description
We proposed to demonstrate the effectiveness of a catalytic membrane reactor (a ceramic membrane combined with a catalyst) to selectively produce methanol by partial oxidation of methane. Methanol is used as a chemical feedstock, gasoline additive, and turbine fuel. Methane partial oxidation using a catalytic membrane reactor has been determined as one of the promising approaches for methanol synthesis from methane. In the original proposal, the membrane was used to selectively remove methanol from the reaction zone before carbon oxides form, thus increasing the methanol yield. Methanol synthesis and separation in one step would also make methane more valuable for producing chemicals and fuels. The cooling tube inserted inside the membrane reactor has created a low temperature zone that rapidly quenches the product stream. This system has proved effective for increasing methanol selectivity during CH4 oxidation. The membranes broke during experiments, however, apparently because of the large radial thermal gradient and axial thermal expansion difference. Our efforts concentrated on improving the membrane lifetime by modifying this non-isothermal membrane reactor.

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 782

Get Book Here

Book Description


Direct Methane Conversion to Methanol. Quarterly Project Status Report, July 1, 1992--September 30, 1992

Direct Methane Conversion to Methanol. Quarterly Project Status Report, July 1, 1992--September 30, 1992 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
Objective is to demonstrate the effectiveness of a catalytic membrane reactor (ceramic membrane combined with catalyst) to selectively produce methanol by partial oxidation of methane. None of the membranes tested in a high pressure system could selectively remove methanol, until a cooling tube was inserted inside the membrane reactor to quench the product stream; this effectively increased methanol selectivity 2 x during methane oxidation. For both conditions, combined selectivity for methanol and CO is constant, 85%. The remaining product is CO2. The membranes were broken when removed from the system; this was remedied when a cooling tube with a smaller diameter was used.

Direct Methane Conversion to Methanol. Annual Report, October 1993--September 1994

Direct Methane Conversion to Methanol. Annual Report, October 1993--September 1994 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 22

Get Book Here

Book Description
We proposed to demonstrate the effectiveness of a catalytic membrane reactor (a ceramic membrane combined with a catalyst) to selectively produce methanol by partial oxidation of methane. Methanol is used as a chemical feedstock, gasoline additive, and turbine fuel. Methane partial oxidation using a catalytic membrane reactor has been determined as one of the promising approaches for methanol synthesis from methane. In the original proposal, the membrane was used to selectively remove methanol from the reaction zone before carbon oxides form, thus increasing the methanol yield. Methanol synthesis and separation in one step would also make methane more valuable for producing chemicals and fuels. However, all the membranes tested in this laboratory lost their selectivity under the reaction conditions. A modified non-isothermal, non-permselective membrane reactor then was built and satisfactory results were obtained. The conversion and selectivity data obtained in this laboratory were better than that of the most published studies.

Government Reports Annual Index

Government Reports Annual Index PDF Author:
Publisher:
ISBN:
Category : Government reports announcements & index
Languages : en
Pages : 1368

Get Book Here

Book Description


Direct Methane Conversion to Methanol. Quarterly Project Status Report, October 1, 1992--December 31, 1992

Direct Methane Conversion to Methanol. Quarterly Project Status Report, October 1, 1992--December 31, 1992 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 3

Get Book Here

Book Description
We proposed to demonstrate the effectiveness of a catalytic membrane reactor (a ceramic membrane combined with a catalyst) to selectively produce methanol by partial oxidation of methane. Methanol is used as a chemical feedstock, gasoline additive, and turbine fuel. Methane partial oxidation using a catalytic membrane reactor has been determined as one of the promising approaches for methanol synthesis from methane. In the original proposal, the membrane was used to be used to selectively remove methanol from the reaction zone before carbon oxides form, thus increasing the methanol yield. Methanol synthesis and separation in one step would also make methane more valuable for producing chemicals and fuels. The cooling tube inserted inside the membrane reactor has created a low temperature zone that rapidly quenches the product stream. This system has proved effective for increasing methanol selectivity during CH4 oxidation, and we are using and modifying this non-isothermal, non-permselective membrane reactor.

Government Reports Announcements & Index

Government Reports Announcements & Index PDF Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 684

Get Book Here

Book Description


Synerjy

Synerjy PDF Author:
Publisher:
ISBN:
Category : Renewable energy sources
Languages : en
Pages : 626

Get Book Here

Book Description


Direct Methane Conversion to Methanol. Final Report, April 13, 1995--September 30, 1996

Direct Methane Conversion to Methanol. Final Report, April 13, 1995--September 30, 1996 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 34

Get Book Here

Book Description
We proposed to demonstrate the effectiveness of a catalytic membrane reactor (a ceramic membrane combined with a catalyst) to selectively produce methanol by partial oxidation of methane. Methanol is used as a chemical feed stock, gasoline additive, and turbine fuel. Methane partial oxidation using a catalytic membrane reactor has been determined as one of the promising approaches for methanol synthesis from methane. Methanol synthesis and separation in one step would also make methane more valuable for producing chemicals and fuels. Another valuable fuel product is H2. Its separation from other gasification products would make it very valuable as a chemical feedstock and clean fuel for fuel cells. Gasification of coal or other organic fuels as a source of H2 produces compounds (CO, CO2, and H2O) that require high temperature (1000-1500 degrees F) and high pressure (600-1000 psia) separations. A zeolite membrane layer on a mechanically stable ceramic or stainless steel support would have ideal applications for this type of separation.

Direct Methane to Methanol

Direct Methane to Methanol PDF Author: Vladimir Arutyunov
Publisher: Elsevier
ISBN: 0444632514
Category : Technology & Engineering
Languages : en
Pages : 321

Get Book Here

Book Description
Direct Methane to Methanol: Foundations and Prospects of the Process offers a state-of-the-art account of one of the most interesting and potentially commercial technologies for direct conversion of natural gas into valuable chemicals. The book thoroughly explains the complex and unusual chemistry of the process, as well as possible applications for direct methane to methanol (DMTM). It covers topics involving thermokinetics, pressure, direct oxidation of heavier alkanes, and more, and provides detailed appendices with experimental data and product yields. This book provides all those who work in the field of gas processing and gas chemistry with the theory and experimental data to develop and apply new processes based on direct oxidation of natural gas. All those who deal with oil and natural gas production and processing will learn about this promising technology for the conversion of gas into more valuable chemicals. - Reviews more than 350 publications on high-pressure, low-temperature oxidation of methane and other gas phase hydrocarbons - Contains rare material available for the first time in English - Explains the reasons of previous failure and outlines the way forward for commercial development of the conversion technology - Presents a deep theoretical knowledge of this complex conversion process