Author: Umberto Zannier
Publisher: Princeton University Press
ISBN: 1400842719
Category : Mathematics
Languages : en
Pages : 175
Book Description
This book considers the so-called Unlikely Intersections, a topic that embraces well-known issues, such as Lang's and Manin-Mumford's, concerning torsion points in subvarieties of tori or abelian varieties. More generally, the book considers algebraic subgroups that meet a given subvariety in a set of unlikely dimension. The book is an expansion of the Hermann Weyl Lectures delivered by Umberto Zannier at the Institute for Advanced Study in Princeton in May 2010. The book consists of four chapters and seven brief appendixes, the last six by David Masser. The first chapter considers multiplicative algebraic groups, presenting proofs of several developments, ranging from the origins to recent results, and discussing many applications and relations with other contexts. The second chapter considers an analogue in arithmetic and several applications of this. The third chapter introduces a new method for approaching some of these questions, and presents a detailed application of this (by Masser and the author) to a relative case of the Manin-Mumford issue. The fourth chapter focuses on the André-Oort conjecture (outlining work by Pila).
An Introduction to Diophantine Equations
Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 0817645497
Category : Mathematics
Languages : en
Pages : 350
Book Description
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
Publisher: Springer Science & Business Media
ISBN: 0817645497
Category : Mathematics
Languages : en
Pages : 350
Book Description
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
Some Problems of Unlikely Intersections in Arithmetic and Geometry
Author: Umberto Zannier
Publisher: Princeton University Press
ISBN: 1400842719
Category : Mathematics
Languages : en
Pages : 175
Book Description
This book considers the so-called Unlikely Intersections, a topic that embraces well-known issues, such as Lang's and Manin-Mumford's, concerning torsion points in subvarieties of tori or abelian varieties. More generally, the book considers algebraic subgroups that meet a given subvariety in a set of unlikely dimension. The book is an expansion of the Hermann Weyl Lectures delivered by Umberto Zannier at the Institute for Advanced Study in Princeton in May 2010. The book consists of four chapters and seven brief appendixes, the last six by David Masser. The first chapter considers multiplicative algebraic groups, presenting proofs of several developments, ranging from the origins to recent results, and discussing many applications and relations with other contexts. The second chapter considers an analogue in arithmetic and several applications of this. The third chapter introduces a new method for approaching some of these questions, and presents a detailed application of this (by Masser and the author) to a relative case of the Manin-Mumford issue. The fourth chapter focuses on the André-Oort conjecture (outlining work by Pila).
Publisher: Princeton University Press
ISBN: 1400842719
Category : Mathematics
Languages : en
Pages : 175
Book Description
This book considers the so-called Unlikely Intersections, a topic that embraces well-known issues, such as Lang's and Manin-Mumford's, concerning torsion points in subvarieties of tori or abelian varieties. More generally, the book considers algebraic subgroups that meet a given subvariety in a set of unlikely dimension. The book is an expansion of the Hermann Weyl Lectures delivered by Umberto Zannier at the Institute for Advanced Study in Princeton in May 2010. The book consists of four chapters and seven brief appendixes, the last six by David Masser. The first chapter considers multiplicative algebraic groups, presenting proofs of several developments, ranging from the origins to recent results, and discussing many applications and relations with other contexts. The second chapter considers an analogue in arithmetic and several applications of this. The third chapter introduces a new method for approaching some of these questions, and presents a detailed application of this (by Masser and the author) to a relative case of the Manin-Mumford issue. The fourth chapter focuses on the André-Oort conjecture (outlining work by Pila).
Quadratic Diophantine Equations
Author: Titu Andreescu
Publisher: Springer
ISBN: 0387541098
Category : Mathematics
Languages : en
Pages : 224
Book Description
This text treats the classical theory of quadratic diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. The presentation features two basic methods to investigate and motivate the study of quadratic diophantine equations: the theories of continued fractions and quadratic fields. It also discusses Pell’s equation and its generalizations, and presents some important quadratic diophantine equations and applications. The inclusion of examples makes this book useful for both research and classroom settings.
Publisher: Springer
ISBN: 0387541098
Category : Mathematics
Languages : en
Pages : 224
Book Description
This text treats the classical theory of quadratic diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. The presentation features two basic methods to investigate and motivate the study of quadratic diophantine equations: the theories of continued fractions and quadratic fields. It also discusses Pell’s equation and its generalizations, and presents some important quadratic diophantine equations and applications. The inclusion of examples makes this book useful for both research and classroom settings.
Selecta: Diophantine problems and polynomials
Author: Andrzej Schinzel
Publisher: European Mathematical Society
ISBN: 9783037190388
Category : Analyse diophantienne
Languages : en
Pages : 554
Book Description
Publisher: European Mathematical Society
ISBN: 9783037190388
Category : Analyse diophantienne
Languages : en
Pages : 554
Book Description
Hilbert's Tenth Problem
Author: Alexandra Shlapentokh
Publisher: Cambridge University Press
ISBN: 9780521833608
Category : Mathematics
Languages : en
Pages : 342
Book Description
Publisher description
Publisher: Cambridge University Press
ISBN: 9780521833608
Category : Mathematics
Languages : en
Pages : 342
Book Description
Publisher description
Diophantus and Diophantine Equations
Author: Isabella Grigoryevna Bashmakova
Publisher: American Mathematical Soc.
ISBN: 1470450496
Category : Mathematics
Languages : en
Pages : 90
Book Description
This book tells the story of Diophantine analysis, a subject that, owing to its thematic proximity to algebraic geometry, became fashionable in the last half century and has remained so ever since. This new treatment of the methods of Diophantus--a person whose very existence has long been doubted by most historians of mathematics--will be accessible to readers who have taken some university mathematics. It includes the elementary facts of algebraic geometry indispensable for its understanding. The heart of the book is a fascinating account of the development of Diophantine methods during the.
Publisher: American Mathematical Soc.
ISBN: 1470450496
Category : Mathematics
Languages : en
Pages : 90
Book Description
This book tells the story of Diophantine analysis, a subject that, owing to its thematic proximity to algebraic geometry, became fashionable in the last half century and has remained so ever since. This new treatment of the methods of Diophantus--a person whose very existence has long been doubted by most historians of mathematics--will be accessible to readers who have taken some university mathematics. It includes the elementary facts of algebraic geometry indispensable for its understanding. The heart of the book is a fascinating account of the development of Diophantine methods during the.
The Diophantine Frobenius Problem
Author: Jorge L. Ramírez Alfonsín
Publisher: Oxford University Press, USA
ISBN: 0198568207
Category : Mathematics
Languages : en
Pages : 260
Book Description
During the early part of the last century, Ferdinand Georg Frobenius (1849-1917) raised he following problem, known as the Frobenius Problem (FP): given relatively prime positive integers a1,...,an, find the largest natural number (called the Frobenius number and denoted by g(a1,...,an) that is not representable as a nonnegative integer combination of a1,...,an, . At first glance FP may look deceptively specialized. Nevertheless it crops up again and again in the most unexpected places and has been extremely useful in investigating many different problems. A number of methods, from several areas of mathematics, have been used in the hope of finding a formula giving the Frobenius number and algorithms to calculate it. The main intention of this book is to highlight such methods, ideas, viewpoints and applications to a broader audience.
Publisher: Oxford University Press, USA
ISBN: 0198568207
Category : Mathematics
Languages : en
Pages : 260
Book Description
During the early part of the last century, Ferdinand Georg Frobenius (1849-1917) raised he following problem, known as the Frobenius Problem (FP): given relatively prime positive integers a1,...,an, find the largest natural number (called the Frobenius number and denoted by g(a1,...,an) that is not representable as a nonnegative integer combination of a1,...,an, . At first glance FP may look deceptively specialized. Nevertheless it crops up again and again in the most unexpected places and has been extremely useful in investigating many different problems. A number of methods, from several areas of mathematics, have been used in the hope of finding a formula giving the Frobenius number and algorithms to calculate it. The main intention of this book is to highlight such methods, ideas, viewpoints and applications to a broader audience.
Recurrence Sequences
Author: Graham Everest
Publisher: American Mathematical Soc.
ISBN: 1470423154
Category : Mathematics
Languages : en
Pages : 338
Book Description
Recurrence sequences are of great intrinsic interest and have been a central part of number theory for many years. Moreover, these sequences appear almost everywhere in mathematics and computer science. This book surveys the modern theory of linear recurrence sequences and their generalizations. Particular emphasis is placed on the dramatic impact that sophisticated methods from Diophantine analysis and transcendence theory have had on the subject. Related work on bilinear recurrences and an emerging connection between recurrences and graph theory are covered. Applications and links to other areas of mathematics are described, including combinatorics, dynamical systems and cryptography, and computer science. The book is suitable for researchers interested in number theory, combinatorics, and graph theory.
Publisher: American Mathematical Soc.
ISBN: 1470423154
Category : Mathematics
Languages : en
Pages : 338
Book Description
Recurrence sequences are of great intrinsic interest and have been a central part of number theory for many years. Moreover, these sequences appear almost everywhere in mathematics and computer science. This book surveys the modern theory of linear recurrence sequences and their generalizations. Particular emphasis is placed on the dramatic impact that sophisticated methods from Diophantine analysis and transcendence theory have had on the subject. Related work on bilinear recurrences and an emerging connection between recurrences and graph theory are covered. Applications and links to other areas of mathematics are described, including combinatorics, dynamical systems and cryptography, and computer science. The book is suitable for researchers interested in number theory, combinatorics, and graph theory.
Diophantine Geometry
Author: Marc Hindry
Publisher: Springer Science & Business Media
ISBN: 1461212103
Category : Mathematics
Languages : en
Pages : 574
Book Description
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
Publisher: Springer Science & Business Media
ISBN: 1461212103
Category : Mathematics
Languages : en
Pages : 574
Book Description
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
Elementary Number Theory
Author: Joe Roberts
Publisher: MIT Press (MA)
ISBN:
Category : Mathematics
Languages : en
Pages : 986
Book Description
Publisher: MIT Press (MA)
ISBN:
Category : Mathematics
Languages : en
Pages : 986
Book Description