Dimensional Analysis Beyond the Pi Theorem

Dimensional Analysis Beyond the Pi Theorem PDF Author: Bahman Zohuri
Publisher: Springer
ISBN: 3319457268
Category : Technology & Engineering
Languages : en
Pages : 266

Get Book

Book Description
Dimensional Analysis and Physical Similarity are well understood subjects, and the general concepts of dynamical similarity are explained in this book. Our exposition is essentially different from those available in the literature, although it follows the general ideas known as Pi Theorem. There are many excellent books that one can refer to; however, dimensional analysis goes beyond Pi theorem, which is also known as Buckingham’s Pi Theorem. Many techniques via self-similar solutions can bound solutions to problems that seem intractable. A time-developing phenomenon is called self-similar if the spatial distributions of its properties at different points in time can be obtained from one another by a similarity transformation, and identifying one of the independent variables as time. However, this is where Dimensional Analysis goes beyond Pi Theorem into self-similarity, which has represented progress for researchers. In recent years there has been a surge of interest in self-similar solutions of the First and Second kind. Such solutions are not newly discovered; they have been identified and named by Zel’dovich, a famous Russian Mathematician in 1956. They have been used in the context of a variety of problems, such as shock waves in gas dynamics, and filtration through elasto-plastic materials. Self-Similarity has simplified computations and the representation of the properties of phenomena under investigation. It handles experimental data, reduces what would be a random cloud of empirical points to lie on a single curve or surface, and constructs procedures that are self-similar. Variables can be specifically chosen for the calculations.

Dimensional Analysis Beyond the Pi Theorem

Dimensional Analysis Beyond the Pi Theorem PDF Author: Bahman Zohuri
Publisher: Springer
ISBN: 3319457268
Category : Technology & Engineering
Languages : en
Pages : 266

Get Book

Book Description
Dimensional Analysis and Physical Similarity are well understood subjects, and the general concepts of dynamical similarity are explained in this book. Our exposition is essentially different from those available in the literature, although it follows the general ideas known as Pi Theorem. There are many excellent books that one can refer to; however, dimensional analysis goes beyond Pi theorem, which is also known as Buckingham’s Pi Theorem. Many techniques via self-similar solutions can bound solutions to problems that seem intractable. A time-developing phenomenon is called self-similar if the spatial distributions of its properties at different points in time can be obtained from one another by a similarity transformation, and identifying one of the independent variables as time. However, this is where Dimensional Analysis goes beyond Pi Theorem into self-similarity, which has represented progress for researchers. In recent years there has been a surge of interest in self-similar solutions of the First and Second kind. Such solutions are not newly discovered; they have been identified and named by Zel’dovich, a famous Russian Mathematician in 1956. They have been used in the context of a variety of problems, such as shock waves in gas dynamics, and filtration through elasto-plastic materials. Self-Similarity has simplified computations and the representation of the properties of phenomena under investigation. It handles experimental data, reduces what would be a random cloud of empirical points to lie on a single curve or surface, and constructs procedures that are self-similar. Variables can be specifically chosen for the calculations.

Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists

Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists PDF Author: Bahman Zohuri
Publisher: Springer
ISBN: 3319134760
Category : Technology & Engineering
Languages : en
Pages : 372

Get Book

Book Description
This ground-breaking reference provides an overview of key concepts in dimensional analysis, and then pushes well beyond traditional applications in fluid mechanics to demonstrate how powerful this tool can be in solving complex problems across many diverse fields. Of particular interest is the book’s coverage of dimensional analysis and self-similarity methods in nuclear and energy engineering. Numerous practical examples of dimensional problems are presented throughout, allowing readers to link the book’s theoretical explanations and step-by-step mathematical solutions to practical implementations.

Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists

Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists PDF Author: Bahman Zohuri
Publisher:
ISBN: 9783319134772
Category :
Languages : en
Pages :

Get Book

Book Description
· Provides innovative techniques for solving complex nonlinear partial differential equations, previously only available to scientists involved in classified government funded projects. · Goes beyond the traditional Pi (Buckingham) Theorem method to apply dimensional analysis to gas dynamics and thermal hydraulics problems where both laminar and turbulent fluids come into play · Includes specific examples demonstrating how dimensional analysis can shed light on applications from shock wave impact prediction to plasma confinement. · Presents a unique approach to similarity methods by discussing Chaos, Fractals and Arcadia, in addition to the more common Self-Similarity and Fractals Techniques This ground-breaking reference provides an overview of key concepts in dimensional analysis and the scientific approach of similarity methods, including a uniquely robust discussion on self-similarity solutions of the First and Second kinds. The coverage pushes well beyond traditional applications in fluid mechanics and gas dynamics to demonstrate how powerful self-similarity can be in solving complex problems across many diverse fields, using nonlinear Partial Differential Equations (PDEs) by reducing them to Ordinary Differential Equations (ODEs) with a simple traditional analytical solution approach. Of particular interest is the book's coverage of dimensional analysis and self-similarity methods in nuclear and energy engineering from Heat Transfer and Thermal Hydraulic points of view. Numerous practical examples of dimensional analysis problems are presented throughout each chapter, with additional problems presented in each appendix, allowing readers to link the book's theoretical explanations and step-by-step mathematical solutions to practical implementations.

Coulson and Richardson’s Chemical Engineering

Coulson and Richardson’s Chemical Engineering PDF Author: R. P. Chhabra
Publisher: Butterworth-Heinemann
ISBN: 0128097469
Category : Technology & Engineering
Languages : en
Pages : 570

Get Book

Book Description
Coulson and Richardson's Chemical Engineering has been fully revised and updated to provide practitioners with an overview of chemical engineering. Each reference book provides clear explanations of theory and thorough coverage of practical applications, supported by case studies. A worldwide team of editors and contributors have pooled their experience in adding new content and revising the old. The authoritative style of the original volumes 1 to 3 has been retained, but the content has been brought up to date and altered to be more useful to practicing engineers. This complete reference to chemical engineering will support you throughout your career, as it covers every key chemical engineering topic. Coulson and Richardson’s Chemical Engineering: Volume 1A: Fluid Flow: Fundamentals and Applications, Seventh Edition, covers momentum transfer (fluid flow) which is one of the three main transport processes of interest to chemical engineers. Covers momentum transfer (fluid flow) which is one of the three main transport processes of interest to chemical engineers Includes reference material converted from textbooks Explores topics, from foundational through technical Includes emerging applications, numerical methods, and computational tools

Thermal Effects of High Power Laser Energy on Materials

Thermal Effects of High Power Laser Energy on Materials PDF Author: Bahman Zohuri
Publisher: Springer Nature
ISBN: 3030630641
Category : Technology & Engineering
Languages : en
Pages : 420

Get Book

Book Description
This book offers a tutorial on the response of materials to lasers, with an emphasis on simple, intuitive models with analytical and mathematical solutions, using techniques such as Laplace Transformation to solve most complex heat conduction equations. It examines the relationship between existing thermal parameters of simple metals and looks at the characteristics of materials and their properties in order to investigate and perform theoretical analysis from a heat conduction perspective mathematically. Topics discussed include optical reflectivity of metals at infrared (IR) wavelengths, laser-induced heat flow in materials, the effects of melting and vaporization, the impulse generated in materials by pulsed radiation, and the influence of the absorption in the blow-off region in irradiated material. Written for engineers, scientists, and graduate-level engineering and physics students, Thermal Effects of High Power Laser Energy on Materials provides an in-depth look at high energy laser technology and its potential industrial and commercial applications in such areas as precision cutting, LIDAR and LADAR, and communications. The knowledge gained from this allows you to apply spaced-based relay mirror in order to compensate laser beam divergence back to its original coherency by preventing further thermal blooming that takes place during laser beam propagation through the atmosphere. Examines the state-of-the-art in currently available high energy laser technologies; Includes computer codes that deal with the response of materials to laser radiation; Provides detailed mathematical solutions of thermal response to laser radiation.

Inertial Confinement Fusion Driven Thermonuclear Energy

Inertial Confinement Fusion Driven Thermonuclear Energy PDF Author: Bahman Zohuri
Publisher: Springer
ISBN: 3319509071
Category : Technology & Engineering
Languages : en
Pages : 313

Get Book

Book Description
This book takes a holistic approach to plasma physics and controlled fusion via Inertial Confinement Fusion (ICF) techniques, establishing a new standard for clean nuclear power generation. Inertial Confinement Fusion techniques to enable laser-driven fusion have long been confined to the black-box of government classification due to related research on thermonuclear weapons applications. This book is therefore the first of its kind to explain the physics, mathematics and methods behind the implosion of the Nd-Glass tiny balloon (pellet), using reliable and thoroughly referenced data sources. The associated computer code and numerical analysis are included in the book. No prior knowledge of Laser Driven Fusion and no more than basic background in plasma physics is required.

Advanced Reactor Concepts (ARC)

Advanced Reactor Concepts (ARC) PDF Author: Ali Zamani Paydar
Publisher: Elsevier
ISBN: 0443189900
Category : Technology & Engineering
Languages : en
Pages : 454

Get Book

Book Description
Nuclear engineers advancing the energy transition are understanding more about the next generation of nuclear plants; however, it is still difficult to access all the critical types, concepts, and applications in one location. Advanced Reactor Concepts (ARC): A New Nuclear Power Plant Perspective Producing Energy gives engineers and nuclear engineering researchers the comprehensive tools to get up to date on the latest technology supporting generation IV nuclear plant systems. After providing a brief history of this area, alternative technology is discussed such as electromagnetic pumps, heat pipes as control devices, Nuclear Air-Brayton Combined Cycles integration, and instrumentation helping nuclear plants to provide dispatchable electricity to the grid and heat to industry. Packed with examples of all the types, benefits, and challenges involved, Advanced Reactor Concepts (ARC) delivers the go-to reference that engineers need to advance safe nuclear energy as a low-carbon option. Describes theory and concepts on generation IV technology such as advanced reactor concepts (ARC) and electromagnetic pumps, and compares different types and sizes. Sets out the energy transition with critical carbon-free technology that can supplement intermittent power sources such as wind and solar. Explains alternative heat storage technology, including Nuclear Air-Brayton Combined Cycles. Introduces advanced main instrumentation systems for in-core probes.

Advances in Hard-to-Cut Materials

Advances in Hard-to-Cut Materials PDF Author: Grzegorz M. Królczyk
Publisher: MDPI
ISBN: 3039283545
Category : Technology & Engineering
Languages : en
Pages : 222

Get Book

Book Description
The rapid growth of modern industry has resulted in a growing demand for construction materials with excellent operational properties. However, the improved features of these materials can significantly hinder their manufacture and, therefore, they can be defined as hard-to-cut. The main difficulties during the manufacturing/processing of hard-to-cut materials are attributed especially to their high hardness and abrasion resistance, high strength at room or elevated temperatures, increased thermal conductivity, as well as resistance to oxidation and corrosion. Nowadays, the group of hard-to-cut materials is extensive and still expanding, which is attributed to the development of a novel manufacturing techniques (e.g., additive technologies). Currently, the group of hard-to-cut materials mainly includes hardened and stainless steels, titanium, cobalt and nickel alloys, composites, ceramics, as well as the hard clads fabricated by additive techniques. This Special Issue, “Advances in Hard-to-Cut Materials: Manufacturing, Properties, Process Mechanics and Evaluation of Surface Integrity”, provides the collection of research papers regarding the various problems correlated with hard-to-cut materials. The analysis of these studies reveals the primary directions regarding the developments in manufacturing methods, characterization, and optimization of hard-to-cut materials.

Units, Dimensions, and Dimensionless Numbers

Units, Dimensions, and Dimensionless Numbers PDF Author: D. C. Ipsen
Publisher:
ISBN:
Category : Dimensional analysis
Languages : en
Pages : 264

Get Book

Book Description
"This reference-text in the area of dimensional analysis offers a clearly written discussion of the concept of units and dimensions. Its purpose is to provide practical knowledge in relation to fluid mechanics and heat transfer, as well as broader fields of physics and research or design engineering. Theory is stressed as the basis for problem solving, and technique is systematically presented as an outcome of theoretical understanding."- Publisher

Street-Fighting Mathematics

Street-Fighting Mathematics PDF Author: Sanjoy Mahajan
Publisher: MIT Press
ISBN: 0262265591
Category : Education
Languages : en
Pages : 152

Get Book

Book Description
An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.