Digital Topology in Medical Three-dimensional Imaging

Digital Topology in Medical Three-dimensional Imaging PDF Author: Jayaram K. Udupa
Publisher:
ISBN:
Category :
Languages : en
Pages : 54

Get Book Here

Book Description

Digital Topology in Medical Three-dimensional Imaging

Digital Topology in Medical Three-dimensional Imaging PDF Author: Jayaram K. Udupa
Publisher:
ISBN:
Category :
Languages : en
Pages : 54

Get Book Here

Book Description


Fundamentals of Three-dimensional Digital Image Processing

Fundamentals of Three-dimensional Digital Image Processing PDF Author: Junichiro Toriwaki
Publisher: Springer Science & Business Media
ISBN: 184800172X
Category : Computers
Languages : en
Pages : 278

Get Book Here

Book Description
This book is a detailed description of the basics of three-dimensional digital image processing. A 3D digital image (abbreviated as “3D image” below) is a digitalized representation of a 3D object or an entire 3D space, stored in a computer as a 3D array. Whereas normal digital image processing is concerned with screens that are a collection of square shapes called “pixels” and their corresponding density levels, the “image plane” in three dimensions is represented by a division into cubical graphical elements (called “voxels”) that represent corresponding density levels. Inthecontextofimageprocessing,in manycases3Dimageprocessingwill refer to the input of multiple 2D images and performing processing in order to understand the 3D space (or “scene”) that they depict. This is a result of research into how to use input from image sensors such as television cameras as a basis for learning about a 3D scene, thereby replicating the sense of vision for humans or intelligent robots, and this has been the central problem in image processing research since the 1970s. However, a completely di?erent type of image with its own new problems, the 3D digital image discussed in this book, rapidly took prominence in the 1980s, particularly in the ?eld of medical imaging. These were recordings of human bodies obtained through computed (or “computerized”) tomography (CT),imagesthatrecordednotonlytheexternal,visiblesurfaceofthesubject but also, to some degree of resolution, its internal structure. This was a type of image that no one had experienced before.

3D Imaging in Medicine, Second Edition

3D Imaging in Medicine, Second Edition PDF Author: Jayaram K. Udupa
Publisher: CRC Press
ISBN: 1351470302
Category : Law
Languages : en
Pages : 362

Get Book Here

Book Description
This book provides a quick and systematic presentation of the principles of biomedical visualization and three-dimensional (3D) imaging. Topics discussed include basic principles and algorithms, surgical planning, neurosurgery, orthopedics, prosthesis design, brain imaging, cardio-pulmonary structure analysis and the assessment of clinical efficacy. Students, scientists, researchers, and radiologists will find 3D Imaging in Medicine a valuable source of information for a variety of actual and potential clinical applications for 3-D imaging.

3D Imaging in Medicine

3D Imaging in Medicine PDF Author: Karl H. Höhne
Publisher: Springer Science & Business Media
ISBN: 3642842119
Category : Computers
Languages : en
Pages : 449

Get Book Here

Book Description
The visualization of human anatomy for diagnostic, therapeutic, and educational pur poses has long been a challenge for scientists and artists. In vivo medical imaging could not be introduced until the discovery of X-rays by Wilhelm Conrad ROntgen in 1895. With the early medical imaging techniques which are still in use today, the three-dimensional reality of the human body can only be visualized in two-dimensional projections or cross-sections. Recently, biomedical engineering and computer science have begun to offer the potential of producing natural three-dimensional views of the human anatomy of living subjects. For a broad application of such technology, many scientific and engineering problems still have to be solved. In order to stimulate progress, the NATO Advanced Research Workshop in Travemiinde, West Germany, from June 25 to 29 was organized. It brought together approximately 50 experts in 3D-medical imaging from allover the world. Among the list of topics image acquisition was addressed first, since its quality decisively influences the quality of the 3D-images. For 3D-image generation - in distinction to 2D imaging - a decision has to be made as to which objects contained in the data set are to be visualized. Therefore special emphasis was laid on methods of object definition. For the final visualization of the segmented objects a large variety of visualization algorithms have been proposed in the past. The meeting assessed these techniques.

3D Imaging in Medicine, Second Edition

3D Imaging in Medicine, Second Edition PDF Author: Jayaram K. Udupa
Publisher: CRC Press
ISBN: 9780849331794
Category : Medical
Languages : en
Pages : 394

Get Book Here

Book Description
The ability to visualize, non-invasively, human internal organs in their true from and shape has intrigued mankind for centuries. While the recent inventions of medical imaging modalities such as computerized tomography and magnetic resonance imaging have revolutionized radiology, the development of three-dimensional (3D) imaging has brought us closer to the age-old quest of non-invasive visualization. The ability to not only visualize but to manipulate and analyze 3D structures from captured multidimensional image data, is vital to a number of diagnostic and therapeutic applications. 3D Imaging in Medicine, Second Edition, unique in its contents, covers both the technical aspects and the actual medical applications of the process in a single source. The value of this technology is obvious. For example, three dimensional imaging allows a radiologist to accurately target the positioning and dosage of chemotherapy as well as to make more accurate diagnoses by showing more pathology; it allows the vascular surgeon to study the flow of blood through clogged arteries; it allows the orthopedist to find all the pieces of a compound fracture; and, it allows oncologists to perform less invasive biopsies. In fact, one of the most important uses of 3D Imaging is in computer-assisted surgery. For example, in cancer surgery, computer images show the surgeon the extent of the tumor so that only the diseased tissue is removed. In short, 3D imaging provides clinicians with information that saves time and money. 3D Imaging in Medicine, Second Edition provides a ready reference on the fundamental science of 3D imaging and its medical applications. The chapters have been written by experts in the field, and the technical aspects are covered in a tutorial fashion, describing the basic principles and algorithms in an easily understandable way. The application areas covered include: surgical planning, neuro-surgery, orthopedics, prosthesis design, brain imaging, analysis of cardio-pulmonary structures, and the assessment of clinical efficacy. The book is designed to provide a quick and systematic understanding of the principles of biomedical visualization to students, scientists and researchers, and to act as a source of information to medical practitioners on a wide variety of clinical applications of 3D imaging.

Multi-dimensional Imaging

Multi-dimensional Imaging PDF Author: Bahram Javidi
Publisher: John Wiley & Sons
ISBN: 1118705742
Category : Technology & Engineering
Languages : en
Pages : 524

Get Book Here

Book Description
Provides a broad overview of advanced multidimensional imaging systems with contributions from leading researchers in the field Multi-dimensional Imaging takes the reader from the introductory concepts through to the latest applications of these techniques. Split into 3 parts covering 3D image capture, processing, visualization and display, using 1) a Multi-View Approach and 2.) a Holographic Approach, followed by a 3rd part addressing other 3D systems approaches, applications and signal processing for advanced 3D imaging. This book describes recent developments, as well as the prospects and challenges in advances in imaging sciences and engineering such as 3D image sensing, 3D holographic imaging, imaging applications for bio-photonics and 3D image recognition. Advanced imaging systems incorporate knowledge from various fields. It is a complex technology that combines physics, optics, signal processing, and image capture techniques. Provides a broad overview of advanced multidimensional imaging systems with contributions from leading researchers in the field. Integrates the background, introductory material with new advances in 3D imaging and applications. Covers the most recent technologies such as high speed digital holography, compressive sensing, real-time 3D integral imaging, 3D TV, photon counting imaging. To be available as an enhanced ebook with added functionality of colour films showing the effects of advanced 3D applications such as 3D microscopy, 3D biomedical imaging and 3D for security and defense applications. Acts as a single source reference to the rapidly developing field of 3D imaging technology. Provides supplementary material on a companion website including video clips, examples, numerical simulations, and experimental results to show the theoretical concepts. With contributions from leading researchers from across these fields, Multi-dimensional Imaging is a comprehensive reference for the imaging technology research community.

Contemporary Perspectives in Three-dimensional Biomedical Imaging

Contemporary Perspectives in Three-dimensional Biomedical Imaging PDF Author: Christian Roux
Publisher:
ISBN:
Category : Medical
Languages : en
Pages : 412

Get Book Here

Book Description


3D Imaging, Analysis and Applications

3D Imaging, Analysis and Applications PDF Author: Yonghuai Liu
Publisher: Springer Nature
ISBN: 3030440702
Category : Computers
Languages : en
Pages : 736

Get Book Here

Book Description
This textbook is designed for postgraduate studies in the field of 3D Computer Vision. It also provides a useful reference for industrial practitioners; for example, in the areas of 3D data capture, computer-aided geometric modelling and industrial quality assurance. This second edition is a significant upgrade of existing topics with novel findings. Additionally, it has new material covering consumer-grade RGB-D cameras, 3D morphable models, deep learning on 3D datasets, as well as new applications in the 3D digitization of cultural heritage and the 3D phenotyping of crops. Overall, the book covers three main areas: ● 3D imaging, including passive 3D imaging, active triangulation 3D imaging, active time-of-flight 3D imaging, consumer RGB-D cameras, and 3D data representation and visualisation; ● 3D shape analysis, including local descriptors, registration, matching, 3D morphable models, and deep learning on 3D datasets; and ● 3D applications, including 3D face recognition, cultural heritage and 3D phenotyping of plants. 3D computer vision is a rapidly advancing area in computer science. There are many real-world applications that demand high-performance 3D imaging and analysis and, as a result, many new techniques and commercial products have been developed. However, many challenges remain on how to analyse the captured data in a way that is sufficiently fast, robust and accurate for the application. Such challenges include metrology, semantic segmentation, classification and recognition. Thus, 3D imaging, analysis and their applications remain a highly-active research field that will continue to attract intensive attention from the research community with the ultimate goal of fully automating the 3D data capture, analysis and inference pipeline.

3D Imaging

3D Imaging PDF Author: Emerson H. Duke
Publisher:
ISBN: 9781608768851
Category : Three-dimensional imaging
Languages : en
Pages : 0

Get Book Here

Book Description
Electron microscope tomography (EMT) has emerged as the leading technique for three-dimensional (3D) structural analysis of unique complex biological specimens. This book reviews the different computational stages involved in EMT, from image acquisition to interpretation of the 3D reconstruction. The high performance computing (HPC) techniques normally used to cope with the computational demands are also described. Moreover, combining the holographic methods with the methods for digital image processing has made it possible to develop the digital holographic interference microscope (DHIM) for real-time 3D imaging of phase microscopic objects and measurement of their morphological parameters. In this book, the classical and holographic methods of phase microobject visualisation are considered. In addition, 3D imaging has become commonplace in the medical field, with its routine use in the better established institutions for pre-natal observations, diagnosis of ailments, work-up prior to surgery, recovery monitoring and many other medical procedures. This book discusses the research methodology required in the reconstruction of 3D volume and employing computer-aided diagnosis to identify various diseases. Details of the different stages of processing, along with the promising results achieved are presented. Also discussed are some considerations for future trends of 3D imaging in the medical field. Other chapters cover detailed derivations of reconstruction algorithms in 2D and modern 3D cone-beam CT (CBCT), evaluate geometric parameters of bone in 3D using CT scans or a new low-radiating device (EOS), and CT based 3D- display providing accurate preoperative visualisation and computerised risk analyses for safety margins of pancreatic- and biliary- tract tumours, as well as for the assessment of abdominal aortic aneurysms (AAA).

Depth Map and 3D Imaging Applications: Algorithms and Technologies

Depth Map and 3D Imaging Applications: Algorithms and Technologies PDF Author: Malik, Aamir Saeed
Publisher: IGI Global
ISBN: 161350327X
Category : Computers
Languages : en
Pages : 647

Get Book Here

Book Description
Over the last decade, significant progress has been made in 3D imaging research. As a result, 3D imaging methods and techniques are being employed for various applications, including 3D television, intelligent robotics, medical imaging, and stereovision. Depth Map and 3D Imaging Applications: Algorithms and Technologies present various 3D algorithms developed in the recent years and to investigate the application of 3D methods in various domains. Containing five sections, this book offers perspectives on 3D imaging algorithms, 3D shape recovery, stereoscopic vision and autostereoscopic vision, 3D vision for robotic applications, and 3D imaging applications. This book is an important resource for professionals, scientists, researchers, academics, and software engineers in image/video processing and computer vision.