Differential Neural Networks for Robust Nonlinear Control

Differential Neural Networks for Robust Nonlinear Control PDF Author: Alexander S. Poznyak
Publisher: World Scientific
ISBN: 9789812811295
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
This book deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical, etc.). Contents: Theoretical Study: Neural Networks Structures; Nonlinear System Identification: Differential Learning; Sliding Mode Identification: Algebraic Learning; Neural State Estimation; Passivation via Neuro Control; Neuro Trajectory Tracking; Neurocontrol Applications: Neural Control for Chaos; Neuro Control for Robot Manipulators; Identification of Chemical Processes; Neuro Control for Distillation Column; General Conclusions and Future Work; Appendices: Some Useful Mathematical Facts; Elements of Qualitative Theory of ODE; Locally Optimal Control and Optimization. Readership: Graduate students, researchers, academics/lecturers and industrialists in neural networks.

Differential Neural Networks for Robust Nonlinear Control

Differential Neural Networks for Robust Nonlinear Control PDF Author: Alexander S. Poznyak
Publisher: World Scientific
ISBN: 9789812811295
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
This book deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical, etc.). Contents: Theoretical Study: Neural Networks Structures; Nonlinear System Identification: Differential Learning; Sliding Mode Identification: Algebraic Learning; Neural State Estimation; Passivation via Neuro Control; Neuro Trajectory Tracking; Neurocontrol Applications: Neural Control for Chaos; Neuro Control for Robot Manipulators; Identification of Chemical Processes; Neuro Control for Distillation Column; General Conclusions and Future Work; Appendices: Some Useful Mathematical Facts; Elements of Qualitative Theory of ODE; Locally Optimal Control and Optimization. Readership: Graduate students, researchers, academics/lecturers and industrialists in neural networks.

Neural Network Based Robust Nonlinear Control

Neural Network Based Robust Nonlinear Control PDF Author: Nishant Unnikrishnan
Publisher:
ISBN:
Category : Adaptive control systems
Languages : en
Pages : 228

Get Book Here

Book Description
"Online trained neural networks have become popular in recent years in the design of robust and adaptive controllers for dynamic systems with uncertainties due to their universal function approximation capabilities. This research explores the application of online neural networks for the design of model following controllers and for dynamic reoptimization of a Single Network Adaptive Critic (SNAC) optimal controller. Model following controllers for a general class of nonlinear systems with unknown uncertainties in their modeling equations have been developed in this research. A desirable characteristic of the model following controller scheme elaborated in this work is that it can be used in conjunction with any known control design technique. This research also discusses a technique that dynamically re-optimizes a Single Network Adaptive Critic controller. The SNAC based optimal controller designed for the nominal plant model no more retains optimality in the presence of uncertainties/unmodeled dynamics that may creep up in the system equations during operation. This necessitates the application of online function approximating neural networks that can help in SNAC reoptimization. Neural network weight update rules for continuous and discrete time systems have been derived using Lyapunov theory that guarantees both the stability of error dynamics and boundedness of the neural network weights. Detailed proofs and numerical simulations of the online weight update rules on various engineering problems have been provided in this document"--Abstract, leaf iii.

Robust and Fault-Tolerant Control

Robust and Fault-Tolerant Control PDF Author: Krzysztof Patan
Publisher: Springer
ISBN: 303011869X
Category : Technology & Engineering
Languages : en
Pages : 209

Get Book Here

Book Description
Robust and Fault-Tolerant Control proposes novel automatic control strategies for nonlinear systems developed by means of artificial neural networks and pays special attention to robust and fault-tolerant approaches. The book discusses robustness and fault tolerance in the context of model predictive control, fault accommodation and reconfiguration, and iterative learning control strategies. Expanding on its theoretical deliberations the monograph includes many case studies demonstrating how the proposed approaches work in practice. The most important features of the book include: a comprehensive review of neural network architectures with possible applications in system modelling and control; a concise introduction to robust and fault-tolerant control; step-by-step presentation of the control approaches proposed; an abundance of case studies illustrating the important steps in designing robust and fault-tolerant control; and a large number of figures and tables facilitating the performance analysis of the control approaches described. The material presented in this book will be useful for researchers and engineers who wish to avoid spending excessive time in searching neural-network-based control solutions. It is written for electrical, computer science and automatic control engineers interested in control theory and their applications. This monograph will also interest postgraduate students engaged in self-study of nonlinear robust and fault-tolerant control.

Advances in Neural Networks - ISNN 2004

Advances in Neural Networks - ISNN 2004 PDF Author: Fuliang Yin
Publisher: Springer
ISBN: 3540286489
Category : Computers
Languages : en
Pages : 1054

Get Book Here

Book Description
This book constitutes the proceedings of the International Symposium on Neural N- works (ISNN 2004) held in Dalian, Liaoning, China duringAugust 19–21, 2004. ISNN 2004 received over 800 submissions from authors in ?ve continents (Asia, Europe, North America, South America, and Oceania), and 23 countries and regions (mainland China, Hong Kong, Taiwan, South Korea, Japan, Singapore, India, Iran, Israel, Turkey, Hungary, Poland, Germany, France, Belgium, Spain, UK, USA, Canada, Mexico, - nezuela, Chile, andAustralia). Based on reviews, the Program Committee selected 329 high-quality papers for presentation at ISNN 2004 and publication in the proceedings. The papers are organized into many topical sections under 11 major categories (theo- tical analysis; learning and optimization; support vector machines; blind source sepa- tion,independentcomponentanalysis,andprincipalcomponentanalysis;clusteringand classi?cation; robotics and control; telecommunications; signal, image and time series processing; detection, diagnostics, and computer security; biomedical applications; and other applications) covering the whole spectrum of the recent neural network research and development. In addition to the numerous contributed papers, ?ve distinguished scholars were invited to give plenary speeches at ISNN 2004. ISNN 2004 was an inaugural event. It brought together a few hundred researchers, educators,scientists,andpractitionerstothebeautifulcoastalcityDalianinnortheastern China. It provided an international forum for the participants to present new results, to discuss the state of the art, and to exchange information on emerging areas and future trends of neural network research. It also created a nice opportunity for the participants to meet colleagues and make friends who share similar research interests.

Nonlinear H2/H-Infinity Constrained Feedback Control

Nonlinear H2/H-Infinity Constrained Feedback Control PDF Author: Murad Abu-Khalaf
Publisher: Springer Science & Business Media
ISBN: 1846283507
Category : Technology & Engineering
Languages : en
Pages : 218

Get Book Here

Book Description
This book provides techniques to produce robust, stable and useable solutions to problems of H-infinity and H2 control in high-performance, non-linear systems for the first time. The book is of importance to control designers working in a variety of industrial systems. Case studies are given and the design of nonlinear control systems of the same caliber as those obtained in recent years using linear optimal and bounded-norm designs is explained.

Robust Control of Nonlinear Systems Using Neural Networks

Robust Control of Nonlinear Systems Using Neural Networks PDF Author: Xiang Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages : 99

Get Book Here

Book Description


Neural Network Control Of Robot Manipulators And Non-Linear Systems

Neural Network Control Of Robot Manipulators And Non-Linear Systems PDF Author: F W Lewis
Publisher: CRC Press
ISBN: 9780748405961
Category : Technology & Engineering
Languages : en
Pages : 470

Get Book Here

Book Description
There has been great interest in "universal controllers" that mimic the functions of human processes to learn about the systems they are controlling on-line so that performance improves automatically. Neural network controllers are derived for robot manipulators in a variety of applications including position control, force control, link flexibility stabilization and the management of high-frequency joint and motor dynamics. The first chapter provides a background on neural networks and the second on dynamical systems and control. Chapter three introduces the robot control problem and standard techniques such as torque, adaptive and robust control. Subsequent chapters give design techniques and Stability Proofs For NN Controllers For Robot Arms, Practical Robotic systems with high frequency vibratory modes, force control and a general class of non-linear systems. The last chapters are devoted to discrete- time NN controllers. Throughout the text, worked examples are provided.

Applications of Neural Adaptive Control Technology

Applications of Neural Adaptive Control Technology PDF Author: Jens Kalkkuhl
Publisher: World Scientific
ISBN: 9789810231514
Category : Technology & Engineering
Languages : en
Pages : 328

Get Book Here

Book Description
This book presents the results of the second workshop on Neural Adaptive Control Technology, NACT II, held on September 9-10, 1996, in Berlin. The workshop was organised in connection with a three-year European-Union-funded Basic Research Project in the ESPRIT framework, called NACT, a collaboration between Daimler-Benz (Germany) and the University of Glasgow (Scotland).The NACT project, which began on 1 April 1994, is a study of the fundamental properties of neural-network-based adaptive control systems. Where possible, links with traditional adaptive control systems are exploited. A major aim is to develop a systematic engineering procedure for designing neural controllers for nonlinear dynamic systems. The techniques developed are being evaluated on concrete industrial problems from within the Daimler-Benz group of companies.The aim of the workshop was to bring together selected invited specialists in the fields of adaptive control, nonlinear systems and neural networks. The first workshop (NACT I) took place in Glasgow in May 1995 and was mainly devoted to theoretical issues of neural adaptive control. Besides monitoring further development of theory, the NACT II workshop was focused on industrial applications and software tools. This context dictated the focus of the book and guided the editors in the choice of the papers and their subsequent reshaping into substantive book chapters. Thus, with the project having progressed into its applications stage, emphasis is put on the transfer of theory of neural adaptive engineering into industrial practice. The contributors are therefore both renowned academics and practitioners from major industrial users of neurocontrol.

Special Issue on Applications of Neural Networks in Control and Instrumentation

Special Issue on Applications of Neural Networks in Control and Instrumentation PDF Author: Martin T. Hagan
Publisher:
ISBN:
Category :
Languages : en
Pages : 110

Get Book Here

Book Description


Discrete-Time High Order Neural Control

Discrete-Time High Order Neural Control PDF Author: Edgar N. Sanchez
Publisher: Springer Science & Business Media
ISBN: 3540782885
Category : Mathematics
Languages : en
Pages : 116

Get Book Here

Book Description
Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.