Differential Algebraic Groups of Finite Dimension

Differential Algebraic Groups of Finite Dimension PDF Author: Alexandru Buium
Publisher: Springer
ISBN: 3540467645
Category : Mathematics
Languages : en
Pages : 160

Get Book Here

Book Description
Differential algebraic groups were introduced by P. Cassidy and E. Kolchin and are, roughly speaking, groups defined by algebraic differential equations in the same way as algebraic groups are groups defined by algebraic equations. The aim of the book is two-fold: 1) the provide an algebraic geometer's introduction to differential algebraic groups and 2) to provide a structure and classification theory for the finite dimensional ones. The main idea of the approach is to relate this topic to the study of: a) deformations of (not necessarily linear) algebraic groups and b) deformations of their automorphisms. The reader is assumed to possesssome standard knowledge of algebraic geometry but no familiarity with Kolchin's work is necessary. The book is both a research monograph and an introduction to a new topic and thus will be of interest to a wide audience ranging from researchers to graduate students.

Differential Algebraic Groups of Finite Dimension

Differential Algebraic Groups of Finite Dimension PDF Author: Alexandru Buium
Publisher: Springer
ISBN: 3540467645
Category : Mathematics
Languages : en
Pages : 160

Get Book Here

Book Description
Differential algebraic groups were introduced by P. Cassidy and E. Kolchin and are, roughly speaking, groups defined by algebraic differential equations in the same way as algebraic groups are groups defined by algebraic equations. The aim of the book is two-fold: 1) the provide an algebraic geometer's introduction to differential algebraic groups and 2) to provide a structure and classification theory for the finite dimensional ones. The main idea of the approach is to relate this topic to the study of: a) deformations of (not necessarily linear) algebraic groups and b) deformations of their automorphisms. The reader is assumed to possesssome standard knowledge of algebraic geometry but no familiarity with Kolchin's work is necessary. The book is both a research monograph and an introduction to a new topic and thus will be of interest to a wide audience ranging from researchers to graduate students.

Differential Algebraic Groups

Differential Algebraic Groups PDF Author:
Publisher: Academic Press
ISBN: 0080874339
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
Differential Algebraic Groups

Differential and Difference Dimension Polynomials

Differential and Difference Dimension Polynomials PDF Author: Alexander V. Mikhalev
Publisher: Springer Science & Business Media
ISBN: 9401712573
Category : Mathematics
Languages : en
Pages : 434

Get Book Here

Book Description
The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen tial equations were actively developed by F. Riquier [RiqlO] and M.

Algebraic Groups

Algebraic Groups PDF Author: J. S. Milne
Publisher: Cambridge University Press
ISBN: 1107167485
Category : Mathematics
Languages : en
Pages : 665

Get Book Here

Book Description
Comprehensive introduction to the theory of algebraic group schemes over fields, based on modern algebraic geometry, with few prerequisites.

Lie Groups and Algebraic Groups

Lie Groups and Algebraic Groups PDF Author: Arkadij L. Onishchik
Publisher: Springer Science & Business Media
ISBN: 364274334X
Category : Mathematics
Languages : en
Pages : 347

Get Book Here

Book Description
This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.

Lie Algebras and Algebraic Groups

Lie Algebras and Algebraic Groups PDF Author: Patrice Tauvel
Publisher: Springer Science & Business Media
ISBN: 3540274278
Category : Mathematics
Languages : en
Pages : 650

Get Book Here

Book Description
Devoted to the theory of Lie algebras and algebraic groups, this book includes a large amount of commutative algebra and algebraic geometry so as to make it as self-contained as possible. The aim of the book is to assemble in a single volume the algebraic aspects of the theory, so as to present the foundations of the theory in characteristic zero. Detailed proofs are included, and some recent results are discussed in the final chapters.

Galois Theory of Linear Differential Equations

Galois Theory of Linear Differential Equations PDF Author: Marius van der Put
Publisher: Springer Science & Business Media
ISBN: 3642557503
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews

Model Theory of Fields

Model Theory of Fields PDF Author: David Marker
Publisher: Cambridge University Press
ISBN: 1316739325
Category : Mathematics
Languages : en
Pages : 166

Get Book Here

Book Description
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fifth publication in the Lecture Notes in Logic series, the authors give an insightful introduction to the fascinating subject of the model theory of fields, concentrating on its connections to stability theory. In the first two chapters David Marker gives an overview of the model theory of algebraically closed, real closed and differential fields. In the third chapter Anand Pillay gives a proof that there are 2א non-isomorphic countable differential closed fields. Finally, Margit Messmer gives a survey of the model theory of separably closed fields of characteristic p > 0.

Representations of Algebraic Groups

Representations of Algebraic Groups PDF Author: Jens Carsten Jantzen
Publisher: American Mathematical Soc.
ISBN: 082184377X
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.

Selected Works of Ellis Kolchin with Commentary

Selected Works of Ellis Kolchin with Commentary PDF Author: Ellis Robert Kolchin
Publisher: American Mathematical Soc.
ISBN: 9780821805428
Category : Mathematics
Languages : en
Pages : 660

Get Book Here

Book Description
The work of Joseph Fels Ritt and Ellis Kolchin in differential algebra paved the way for exciting new applications in constructive symbolic computation, differential Galois theory, the model theory of fields, and Diophantine geometry. This volume assembles Kolchin's mathematical papers, contributing solidly to the archive on construction of modern differential algebra. This collection of Kolchin's clear and comprehensive papers--in themselves constituting a history of the subject--is an invaluable aid to the student of differential algebra. In 1910, Ritt created a theory of algebraic differential equations modeled not on the existing transcendental methods of Lie, but rather on the new algebra being developed by E. Noether and B. van der Waerden. Building on Ritt's foundation, and deeply influenced by Weil and Chevalley, Kolchin opened up Ritt theory to modern algebraic geometry. In so doing, he led differential geometry in a new direction. By creating differential algebraic geometry and the theory of differential algebraic groups, Kolchin provided the foundation for a "new geometry" that has led to both a striking and an original approach to arithmetic algebraic geometry. Intriguing possibilities were introduced for a new language for nonlinear differential equations theory. The volume includes commentary by A. Borel, M. Singer, and B. Poizat. Also Buium and Cassidy trace the development of Kolchin's ideas, from his important early work on the differential Galois theory to his later groundbreaking results on the theory of differential algebraic geometry and differential algebraic groups. Commentaries are self-contained with numerous examples of various aspects of differential algebra and its applications. Central topics of Kolchin's work are discussed, presenting the history of differential algebra and exploring how his work grew from and transformed the work of Ritt. New directions of differential algebra are illustrated, outlining important current advances. Prerequisite to understanding the text is a background at the beginning graduate level in algebra, specifically commutative algebra, the theory of field extensions, and Galois theory.