Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering

Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering PDF Author: Nasim Uddin
Publisher: Elsevier
ISBN: 0857098950
Category : Technology & Engineering
Languages : en
Pages : 565

Get Book Here

Book Description
The use of fiber-reinforced polymer (FRP) composite materials has had a dramatic impact on civil engineering techniques over the past three decades. FRPs are an ideal material for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. Developments in fiber-reinforced polymer (FRP) composites for civil engineering outlines the latest developments in fiber-reinforced polymer (FRP) composites and their applications in civil engineering.Part one outlines the general developments of fiber-reinforced polymer (FRP) use, reviewing recent advancements in the design and processing techniques of composite materials. Part two outlines particular types of fiber-reinforced polymers and covers their use in a wide range of civil engineering and structural applications, including their use in disaster-resistant buildings, strengthening steel structures and bridge superstructures.With its distinguished editor and international team of contributors, Developments in fiber-reinforced polymer (FRP) composites for civil engineering is an essential text for researchers and engineers in the field of civil engineering and industries such as bridge and building construction. - Outlines the latest developments in fiber-reinforced polymer composites and their applications in civil engineering - Reviews recent advancements in the design and processing techniques of composite materials - Covers the use of particular types of fiber-reinforced polymers in a wide range of civil engineering and structural applications

Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering

Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering PDF Author: Nasim Uddin
Publisher: Elsevier
ISBN: 0857098950
Category : Technology & Engineering
Languages : en
Pages : 565

Get Book Here

Book Description
The use of fiber-reinforced polymer (FRP) composite materials has had a dramatic impact on civil engineering techniques over the past three decades. FRPs are an ideal material for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. Developments in fiber-reinforced polymer (FRP) composites for civil engineering outlines the latest developments in fiber-reinforced polymer (FRP) composites and their applications in civil engineering.Part one outlines the general developments of fiber-reinforced polymer (FRP) use, reviewing recent advancements in the design and processing techniques of composite materials. Part two outlines particular types of fiber-reinforced polymers and covers their use in a wide range of civil engineering and structural applications, including their use in disaster-resistant buildings, strengthening steel structures and bridge superstructures.With its distinguished editor and international team of contributors, Developments in fiber-reinforced polymer (FRP) composites for civil engineering is an essential text for researchers and engineers in the field of civil engineering and industries such as bridge and building construction. - Outlines the latest developments in fiber-reinforced polymer composites and their applications in civil engineering - Reviews recent advancements in the design and processing techniques of composite materials - Covers the use of particular types of fiber-reinforced polymers in a wide range of civil engineering and structural applications

Fiber Reinforced Polymer (FRP) Composites for Infrastructure Applications

Fiber Reinforced Polymer (FRP) Composites for Infrastructure Applications PDF Author: Ravi Jain
Publisher: Springer Science & Business Media
ISBN: 9400723571
Category : Science
Languages : en
Pages : 285

Get Book Here

Book Description
This book examines current issues of fiber reinforced polymer (FRP) composites in civil infrastructure. The contents of this book are divided into two parts. The first part engages topics related to durability and service life of FRP composites and how they contribute to sustainability. The second part highlights implementation and applications of the FRP composites with an emphasis on bridge structures. An introductory chapter provides an overview of FRP composites and its role in a sustainable built environment highlighting the issues of durability and service life followed by a current review of sustainability in infrastructure design.​

Advances in FRP Composites in Civil Engineering

Advances in FRP Composites in Civil Engineering PDF Author: Lieping Ye
Publisher: Springer Science & Business Media
ISBN: 3642174876
Category : Technology & Engineering
Languages : en
Pages : 956

Get Book Here

Book Description
"Advances in FRP Composites in Civil Engineering" contains the papers presented at the 5th International Conference on Fiber Reinforced Polymer (FRP) Composites in Civil Engineering in 2010, which is an official conference of the International Institute for FRP in Construction (IIFC). The book includes 7 keynote papers which are presented by top professors and engineers in the world and 203 papers covering a wide spectrum of topics. These important papers not only demonstrate the recent advances in the application of FRP composites in civil engineering, but also point to future research endeavors in this exciting area. Researchers and professionals in the field of civil engineering will find this book is exceedingly valuable. Prof. Lieping Ye and Dr. Peng Feng both work at the Department of Civil Engineering, Tsinghua University, China. Qingrui Yue is a Professor at China Metallurgical Group Corporation.

10th International Conference on FRP Composites in Civil Engineering

10th International Conference on FRP Composites in Civil Engineering PDF Author: Alper Ilki
Publisher: Springer Nature
ISBN: 3030881660
Category : Technology & Engineering
Languages : en
Pages : 2516

Get Book Here

Book Description
This volume highlights the latest advances, innovations, and applications in the field of FRP composites and structures, as presented by leading international researchers and engineers at the 10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE), held in Istanbul, Turkey on December 8-10, 2021. It covers a diverse range of topics such as All FRP structures; Bond and interfacial stresses; Concrete-filled FRP tubular members; Concrete structures reinforced or pre-stressed with FRP; Confinement; Design issues/guidelines; Durability and long-term performance; Fire, impact and blast loading; FRP as internal reinforcement; Hybrid structures of FRP and other materials; Materials and products; Seismic retrofit of structures; Strengthening of concrete, steel, masonry and timber structures; and Testing. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.

The International Handbook of FRP Composites in Civil Engineering

The International Handbook of FRP Composites in Civil Engineering PDF Author: Manoochehr Zoghi
Publisher: CRC Press
ISBN: 0849320135
Category : Technology & Engineering
Languages : en
Pages : 708

Get Book Here

Book Description
Fiber-reinforced polymer (FRP) composites have become an integral part of the construction industry because of their versatility, enhanced durability and resistance to fatigue and corrosion, high strength-to-weight ratio, accelerated construction, and lower maintenance and life-cycle costs. Advanced FRP composite materials are also emerging for a wide range of civil infrastructure applications. These include everything from bridge decks, bridge strengthening and repairs, and seismic retrofit to marine waterfront structures and sustainable, energy-efficient housing. The International Handbook of FRP Composites in Civil Engineering brings together a wealth of information on advances in materials, techniques, practices, nondestructive testing, and structural health monitoring of FRP composites, specifically for civil infrastructure. With a focus on professional applications, the handbook supplies design guidelines and standards of practice from around the world. It also includes helpful design formulas, tables, and charts to provide immediate answers to common questions. Organized into seven parts, the handbook covers: FRP fundamentals, including history, codes and standards, manufacturing, materials, mechanics, and life-cycle costs Bridge deck applications and the critical topic of connection design for FRP structural members External reinforcement for rehabilitation, including the strengthening of reinforced concrete, masonry, wood, and metallic structures FRP composites for the reinforcement of concrete structures, including material characteristics, design procedures, and quality assurance–quality control (QA/QC) issues Hybrid FRP composite systems, with an emphasis on design, construction, QA/QC, and repair Quality control, quality assurance, and evaluation using nondestructive testing, and in-service monitoring using structural health monitoring of FRP composites, including smart composites that can actively sense and respond to the environment and internal states FRP-related books, journals, conference proceedings, organizations, and research sources Comprehensive yet concise, this is an invaluable reference for practicing engineers and construction professionals, as well as researchers and students. It offers ready-to-use information on how FRP composites can be more effectively utilized in new construction, repair and reconstruction, and architectural engineering.

Developments in fiber-reinforced polymer (FRP) composites for civil engineering

Developments in fiber-reinforced polymer (FRP) composites for civil engineering PDF Author: O. Gunes
Publisher: Elsevier Inc. Chapters
ISBN: 0128087684
Category : Technology & Engineering
Languages : en
Pages : 39

Get Book Here

Book Description
Fiber-reinforced polymer (FRP) composite materials have been increasingly used in civil engineering applications in the past two decades. Their wide ranging use, however, is still not realized due to a few fundamental issues including high material costs, relatively short history of applications and the gaps in the development of established standards. Design safety requires that all possible modes and mechanisms of failure are identified, characterized, and accounted for in the design procedures. This chapter provides a review of the failure types encountered in structural engineering applications of FRP and the preventive methods and strategies that have been developed to eliminate or delay such failures. As part of preventive measures, various non-destructive testing (NDT) and structural health monitoring (SHM) methods used for monitoring FRP applications are discussed with illustrative examples.

Strengthening and Rehabilitation of Civil Infrastructures Using Fibre-Reinforced Polymer (FRP) Composites

Strengthening and Rehabilitation of Civil Infrastructures Using Fibre-Reinforced Polymer (FRP) Composites PDF Author: L C Hollaway
Publisher: Elsevier
ISBN: 1845694899
Category : Technology & Engineering
Languages : en
Pages : 415

Get Book Here

Book Description
The repair of deteriorated, damaged and substandard civil infrastructures has become one of the most important issues for the civil engineer worldwide. This important book discusses the use of externally-bonded fibre-reinforced polymer (FRP) composites to strengthen, rehabilitate and retrofit civil engineering structures, covering such aspects as material behaviour, structural design and quality assurance.The first three chapters of the book review structurally-deficient civil engineering infrastructure, including concrete, metallic, masonry and timber structures. FRP composites used in rehabilitation and surface preparation of the component materials are also reviewed. The next four chapters deal with the design of FRP systems for the flexural and shear strengthening of reinforced concrete (RC) beams and the strengthening of RC columns. The following two chapters examine the strengthening of metallic and masonry structures with FRP composites. The last four chapters of the book are devoted to practical considerations in the flexural strengthening of beams with unstressed and prestressed FRP plates, durability of externally bonded FRP composite systems, quality assurance and control, maintenance, repair, and case studies.With its distinguished editors and international team of contributors, Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites is a valuable reference guide for engineers, scientists and technical personnel in civil and structural engineering working on the rehabilitation and strengthening of the civil infrastructure. - Reviews the use of fibre-reinforced polymer (FRP) composites in structurally damaged and sub-standard civil engineering structures - Examines the role and benefits of fibre-reinforced polymer (FRP) composites in different types of structures such as masonry and metallic strengthening - Covers practical considerations including material behaviour, structural design and quality assurance

Developments in fiber-reinforced polymer (FRP) composites for civil engineering

Developments in fiber-reinforced polymer (FRP) composites for civil engineering PDF Author: N.U. Uddin
Publisher: Elsevier Inc. Chapters
ISBN: 0128087749
Category : Technology & Engineering
Languages : en
Pages : 42

Get Book Here

Book Description
The chapter begins by discussing a new type of sandwich panel called composite structural insulated panels (CSIPs) intended to replace the traditional SIPs that are made of wood-based materials. A detailed analytical modeling procedure is presented in order to determine the global buckling, interfacial tensile stress at facesheet/core debonding, critical wrinkling stress at facesheet/core debonding, equivalent stiffness, and deflection for CSIPs. The proposed models were validated using experimental results that have been conducted on full-scale CSIP walls and floor panels. In order to be used as a hazard-resistant material, a detailed section was presented to show the resistance of CSIP elements to the different types of hazard effects, including impact loading, floodwater effect, fire effect, and windstorm loading.

Developments in fiber-reinforced polymer (FRP) composites for civil engineering

Developments in fiber-reinforced polymer (FRP) composites for civil engineering PDF Author: Y. Kitane
Publisher: Elsevier Inc. Chapters
ISBN: 0128087773
Category : Technology & Engineering
Languages : en
Pages : 44

Get Book Here

Book Description
This chapter first reviews current structural applications of fiber-reinforced polymer (FRP) composites in bridge structures, and describes advantages of FRP in bridge applications. This chapter then introduces the design of a hybrid FRP-concrete bridge superstructure, which has been developed at The University at Buffalo for the past ten years, and discusses structural performance of the superstructure based on extensive experimental and analytical studies.

Developments in fiber-reinforced polymer (FRP) composites for civil engineering

Developments in fiber-reinforced polymer (FRP) composites for civil engineering PDF Author: O. Faruk
Publisher: Elsevier Inc. Chapters
ISBN: 012808765X
Category : Technology & Engineering
Languages : en
Pages : 44

Get Book Here

Book Description
Biofibers are emerging as a low cost, lightweight and environmentally superior alternative in composites. Generally, different fibers exhibit different properties that are fundamentally important to the resultant composites. This chapter gives an overview of the most common biofibers in biocomposites, covering their sources, types, structure, composition, and properties. Drawbacks of biofibers, such as dimensional instability, moisture absorption, biological, ultraviolet and fire resistance, will be discussed. The chapter will focus on their modifications (physical and chemical methods), matrices based on their petrochemical resources and bio-based, processing of biofiber reinforced plastic composites covering the factors influencing processing (humidity, additives, machinery, processing parameter, fiber content and length), and processing techniques (compounding, compression molding, extrusion, injection molding, pultrusion and others) will be discussed. The properties of the biocomposites based on their mechanical, physical, and biological behavior will also be covered. Lastly, this chapter concludes with recent developments and trends of biocomposites in the near future in civil engineering.