Conceptual Development of Steady State Compact Fusion Neutron Sources

Conceptual Development of Steady State Compact Fusion Neutron Sources PDF Author: International Atomic Energy Agency
Publisher: International Atomic Energy Agency
ISBN: 9789201035196
Category : Technology & Engineering
Languages : en
Pages : 32

Get Book Here

Book Description
Fusion neutron sources have many important practical uses, including triggering fission reactions, manufacturing medical isotopes, testing materials and components for use in future fusion power reactors, and facilitating the production of various isotopes like tritium. All these applications can be potentially improved by achieving high energy compact fusion neutron sources (CFNSs). The present publication is a compilation of the main results and findings of an IAEA coordinated research project (CRP) on the development of concepts and conceptual designs for both low and high power CFNSs. Through the collaboration of experts in the participating Member States, the results achieved under the project laid the foundation for practical applications of intense fusion neutron sources.

Conceptual Development of Steady State Compact Fusion Neutron Sources

Conceptual Development of Steady State Compact Fusion Neutron Sources PDF Author: International Atomic Energy Agency
Publisher: International Atomic Energy Agency
ISBN: 9789201035196
Category : Technology & Engineering
Languages : en
Pages : 32

Get Book Here

Book Description
Fusion neutron sources have many important practical uses, including triggering fission reactions, manufacturing medical isotopes, testing materials and components for use in future fusion power reactors, and facilitating the production of various isotopes like tritium. All these applications can be potentially improved by achieving high energy compact fusion neutron sources (CFNSs). The present publication is a compilation of the main results and findings of an IAEA coordinated research project (CRP) on the development of concepts and conceptual designs for both low and high power CFNSs. Through the collaboration of experts in the participating Member States, the results achieved under the project laid the foundation for practical applications of intense fusion neutron sources.

Development of Steady State Compact Fusion Neutron Sources

Development of Steady State Compact Fusion Neutron Sources PDF Author: International Atomic Energy Agency
Publisher:
ISBN: 9789201227225
Category :
Languages : en
Pages : 120

Get Book Here

Book Description
Fusion neutron sources have many important practical uses, such as irradiation testing of materials and components, facilitating the production of various isotopes such as tritium, driving subcritical cores, characterizing spent nuclear fuel, and manufacturing medical isotopes. All these applications can be potentially improved by achieving higher neutron yields and fluxes in compact fusion neutron sources (CFNSs). This publication is a compilation arising from an IAEA coordinated research project on this topic and presents the project's main results and findings with the aim of supporting stakeholders in the development of CFNSs in the transition from conceptual to engineering design.

Development of Steady State Compact Fusion Neutron Sources

Development of Steady State Compact Fusion Neutron Sources PDF Author: IAEA.
Publisher:
ISBN: 9781523149803
Category : Controlled fusion
Languages : en
Pages : 0

Get Book Here

Book Description
"Fusion neutron sources have many important practical uses, such as irradiation testing of materials and components, facilitating the production of various isotopes such as tritium, driving subcritical cores, characterizing spent nuclear fuel, and manufacturing medical isotopes. All these applications can be potentially improved by achieving higher neutron yields and fluxes in compact fusion neutron sources (CFNSs). This publication is a compilation arising from an IAEA coordinated research project on this topic and presents the project's main results and findings with the aim of supporting stakeholders in the development of CFNSs in the transition from conceptual to engineering design."--

Development of Steady State Compact Fusion Neutron Sources

Development of Steady State Compact Fusion Neutron Sources PDF Author:
Publisher:
ISBN: 9789201226228
Category : Neutron sources
Languages : en
Pages : 0

Get Book Here

Book Description
"Fusion neutron sources have many important practical uses, such as irradiation testing of materials and components, facilitating the production of various isotopes such as tritium, driving subcritical cores, characterizing spent nuclear fuel, and manufacturing medical isotopes. All these applications can be potentially improved by achieving higher neutron yields and fluxes in compact fusion neutron sources (CFNSs). This publication is a compilation arising from an IAEA coordinated research project on this topic and presents the project's main results and findings with the aim of supporting stakeholders in the development of CFNSs in the transition from conceptual to engineering design."--Publisher's description.

High-flux Source of Fusion Neutrons for Material and Component Testing

High-flux Source of Fusion Neutrons for Material and Component Testing PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The inner part of a fusion reactor will have to operate at very high neutron loads. In steady-state reactors the minimum fluence before the scheduled replacement of the reactor core should be at least l0-15 Mw.yr/m2. A more frequent replacement of the core is hardly compatible with economic constraints. A most recent summary of the discussions of these issues is presented in Ref. [l]. If and when times come to build a commercial fusion reactor, the availability of information on the behavior of materials and components at such fluences will become mandatory for making a final decision. This makes it necessary an early development and construction of a neutron source for fusion material and component testing. In this paper, we present information on one very attractive concept of such a source: a source based on a so called Gas Dynamic Trap. This neutron source was proposed in the mid 1980s (Ref. [2]; see also a survey [3] with discussion of the early stage of the project). Since then, gradual accumulation of the relevant experimental information on a modest-scale experimental facility GDT at Novosibirsk, together with a continuing design activity, have made initial theoretical considerations much more credible. We believe that such a source can be built within 4 or 5 years. Of course, one should remember that there is a chance for developing steady-state reactors with a liquid (and therefore continuously renewable) first wall [4], which would also serve as a tritium breeder. In this case, the need in the neutron testing will become less pressing. However, it is not clear yet that the concept of the flowing wall will be compatible with all types of steady-state reactors. It seems therefore prudent to be prepared to the need of a quick construction of a neutron source. It should also be mentioned that there exist projects of the accelerator-based neutron sources (e.g., [5]). However, they generally have two major disadvantages: a wrong neutron spectrum, with a considerable excess of high-energy neutrons, and smaller test volume. In addition their development requires considerable investments into non-fusion-related technologies, whereas the work on plasma-type sources would certainly boost technology of fusion energy. Broad discussion of these issues can be found in Refs. [3, 6, 7].

Novel Neutralized-beam Intense Neutron Source for Fusion Technology Development

Novel Neutralized-beam Intense Neutron Source for Fusion Technology Development PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D° and T° beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T° + T space-charge-neutralized beam incident on either a LiD or gas D2 target with calculated 14-MeV neutron yields of 2 x 1015/s, 7 x 1015/s, or 1.6 x 1016/s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm2.

Magnetic Fusion Technology

Magnetic Fusion Technology PDF Author: Thomas J. Dolan
Publisher: Springer Science & Business Media
ISBN: 1447155564
Category : Technology & Engineering
Languages : en
Pages : 816

Get Book Here

Book Description
Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research

Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309487439
Category : Science
Languages : en
Pages : 341

Get Book Here

Book Description
Fusion offers the prospect of virtually unlimited energy. The United States and many nations around the world have made enormous progress toward achieving fusion energy. With ITER scheduled to go online within a decade and demonstrate controlled fusion ten years later, now is the right time for the United States to develop plans to benefit from its investment in burning plasma research and take steps to develop fusion electricity for the nation's future energy needs. At the request of the Department of Energy, the National Academies of Sciences, Engineering, and Medicine organized a committee to develop a strategic plan for U.S. fusion research. The final report's two main recommendations are: (1) The United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at the scale of a power plant. (2) The United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.

Neutron Generators for Analytical Purposes

Neutron Generators for Analytical Purposes PDF Author: International Atomic Energy Agency
Publisher: IAEA Radiation Technology Repo
ISBN: 9789201251107
Category : Science
Languages : en
Pages : 145

Get Book Here

Book Description
This publication addresses recent developments in neutron generator (NG) technology. It presents information on compact instruments with high neutron yield to be used for neutron activation analysis (NAA) and prompt gamma neutron activation analysis in combination with high count rate spectrometers. Traditional NGs have been shown to be effective for applications including borehole logging, homeland security, nuclear medicine and the on-line analysis of aluminium, coal and cement. Pulsed fast thermal neutron analysis, as well as tagged and timed neutron analysis, are additional techniques which can be applied using NG. Furthermore, NG can effectively be used for elemental analysis and is also effective for analysis of hidden materials by neutron radiography. Useful guidelines for developing NG based research laboratories are also provided in this publication.

Conceptual Design of a Reversed-field Pinch Fusion Neutron Source

Conceptual Design of a Reversed-field Pinch Fusion Neutron Source PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The conceptual design of an ohmically-heated, reversed-field pinch (RFP) operating with a 5-MWm2 steady-state DT fusion neutron wall loading while generating (approximately)100-MW total fusion power is presented. These results are also useful in projecting the development of an economic source of DT neutrons for large-volume ((approximately)10 m3) fusion nuclear testing. 6 refs., 4 figs., 5 tabs.