Development of Novel Activated Carbon-Based Adsorbents for Control of Mercury Emission From Coal-Fired Power Plants

Development of Novel Activated Carbon-Based Adsorbents for Control of Mercury Emission From Coal-Fired Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The overall objective of this study is to evaluate pertinent design and operational parameters that would enable successful application of activated carbon adsorption for the reduction of mercury emissions from coal-fired power plants. The study will evaluate the most suitable impregnate such as sulfur, chloride and other chelating agents for its ability to enhance the adsorptive capacity of activated carbon for mercury vapor under various process conditions. The main process variables to be evaluated include temperature, mercury concentration and speciation, relative humidity, oxygen content, and presence of SO2 and NOx in the flue gas. The optimal amount of impregnate for each of these carbons will be determined based on the exhibited performance. Another important parameter which governs the applicability of adsorption technology for the flue gas clean up is the rate at which vapor phase mercury is being removed from the flue gas by activated carbon. Therefore, the second part of this study will evaluate the adsorption kinetics using the impregnated activated carbons listed above. The rate of mercury uptake will also be evaluated under the process conditions that are representative of coal-fired power plants. Concerned with the ability of the adsorbed mercury to migrate back into the environment once saturated adsorbent is removed from the system, the study will also focus on the mercury desorption rate as a function of the type of impregnate, loading conditions, and the time of contact prior to disposal.

Development of Novel Activated Carbon-Based Adsorbents for Control of Mercury Emission From Coal-Fired Power Plants

Development of Novel Activated Carbon-Based Adsorbents for Control of Mercury Emission From Coal-Fired Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The overall objective of this study is to evaluate pertinent design and operational parameters that would enable successful application of activated carbon adsorption for the reduction of mercury emissions from coal-fired power plants. The study will evaluate the most suitable impregnate such as sulfur, chloride and other chelating agents for its ability to enhance the adsorptive capacity of activated carbon for mercury vapor under various process conditions. The main process variables to be evaluated include temperature, mercury concentration and speciation, relative humidity, oxygen content, and presence of SO2 and NOx in the flue gas. The optimal amount of impregnate for each of these carbons will be determined based on the exhibited performance. Another important parameter which governs the applicability of adsorption technology for the flue gas clean up is the rate at which vapor phase mercury is being removed from the flue gas by activated carbon. Therefore, the second part of this study will evaluate the adsorption kinetics using the impregnated activated carbons listed above. The rate of mercury uptake will also be evaluated under the process conditions that are representative of coal-fired power plants. Concerned with the ability of the adsorbed mercury to migrate back into the environment once saturated adsorbent is removed from the system, the study will also focus on the mercury desorption rate as a function of the type of impregnate, loading conditions, and the time of contact prior to disposal.

Development of Novel Activated Carbon-based Adsorbents for Control of Mercury Emissions from Coal-fired Power Plants

Development of Novel Activated Carbon-based Adsorbents for Control of Mercury Emissions from Coal-fired Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
The overall objective of this study is to evaluate pertinent design and operational parameters that would enable successful application of adsorption-based technologies for the reduction of mercury emissions from coal-fired power plants. The first part of the study will evaluate the most suitable impregnate for its ability to enhance the adsorptive capacity of activated carbon for mercury vapor under various process conditions. The second part of the study will evaluate the rate of mercury uptake (adsorption kinetics) by several impregnated activated carbons. Concerned with the ability of the adsorbed mercury to migrate back into the environment once saturated adsorbent is removed from the system, the study will also determine the fate of mercury adsorbed on these impregnated carbons.

Development of Novel Activated Carbon-based Adsorbents for the Control of Mercury Emissions from Coal-fired Power Plants

Development of Novel Activated Carbon-based Adsorbents for the Control of Mercury Emissions from Coal-fired Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 167

Get Book Here

Book Description
In addition to naturally occurring mercury sources, anthropogenic activities increase the mercury loading to the environment. Although not all produced mercury is dissipated directly into the environment, only minor portions of the total production are stocked or recycled, and the rest of the mercury and its compounds is finally released in some way into atmosphere, surface waters and soil, or ends in landfills dumps, and refuse. Since mercury and its compounds are highly toxic, their presence in the environment constitutes potential impact on all living organisms, including man. The first serious consequence of industrial mercury discharges causing neurological disorder even death occurred in Minimata, Japan in 1953. Systematic studies showed that mercury poisoning is mainly found in fish-eating populations. However, various levels of mercury are also found in food other than fish. During the past several decades, research has been conducted on the evaluation of risks due to exposure to mercury and the development of control technologies for mercury emissions. In 1990, the Clean Air Act Amendments listed mercury, along with 10 other metallic species, as a hazardous air pollutant (HAP). This has further stimulated research for mercury control during the past several years. The impact of mercury on humans, sources of mercury in the environment, current mercury control strategies and the objective of this research are discussed in this section.

Development of a Novel Activated Carbon Based Adsorbents for Control of Mercury Emissions from Coal-Fired Power Plants

Development of a Novel Activated Carbon Based Adsorbents for Control of Mercury Emissions from Coal-Fired Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description
The overall objective of this study is to evaluate pertinent design and operational parameters that would enable successful application of activated carbon adsorption for the reduction of mercury emissions from coal-fired power plants. The study will evaluate the most suitable impregnate such as sulfur, chloride and other chelating agents for its ability to enhance the adsorptive capacity of activated carbon for mercury vapor under various process conditions. The main process variables to be evaluated include temperature, mercury concentration and speciation, relative humidity, oxygen content, and presence of S02 and NO(subscript x) in the flue gas. The optimal amount of impregnate for each of these carbons will be determined based on the exhibited performance. Another important parameter which governs the applicability of adsorption technology for the flue gas clean up is the rate at which vapor phase mercury is being removed from the flue gas by activated carbon. Therefore, the second part of this study will evaluate the adsorption kinetics using the impregnated activated carbons listed above. The rate of mercury uptake will also be evaluated under the process conditions that are representative of coal-fired power plants. Concerned with the ability of the adsorbed mercury to migrate back into the environment once saturated adsorbent is removed from the system, the study will also focus on the mercury desorption rate as a function of the type of impregnate, loading conditions, and the time of contact prior to disposal.

Developments in FGD

Developments in FGD PDF Author: Hermine N. Soud
Publisher:
ISBN:
Category : Coal mines and mining
Languages : en
Pages : 96

Get Book Here

Book Description


Coal Fired Flue Gas Mercury Emission Controls

Coal Fired Flue Gas Mercury Emission Controls PDF Author: Jiang Wu
Publisher: Springer
ISBN: 3662463474
Category : Technology & Engineering
Languages : en
Pages : 163

Get Book Here

Book Description
Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations. Readers will arrive at a comprehensive understanding of various mercury emission control methods that are suitable for industrial applications. The book is intended for scientists, researchers, engineers and graduate students in the fields of energy science and technology, environmental science and technology and chemical engineering.

Novel Carbon Adsorbents

Novel Carbon Adsorbents PDF Author: Juan M.D. Tascón
Publisher: Elsevier
ISBN: 0080977456
Category : Technology & Engineering
Languages : en
Pages : 703

Get Book Here

Book Description
Following in the lineage of Adsorption by Carbons (Bottani & Tascon, 2008), this work explores current research within contemporary novel carbon adsorbents. Both basic and applied aspects are discussed for this important class of materials. The first section of the book introduces physical adsorption and carbonaceous materials, and is followed by a section concerning the fundamentals of adsorption by carbons. This leads to development of a series of theoretical concepts that serve as an introduction to the following section in which adsorption is mainly envisaged as a tool to characterize the porous texture and surface chemistry of carbons. Particular attention is paid to novel nanocarbons, and the electrochemistry of adsorption by carbons is also addressed. Finally, several important technological applications of gas and liquid adsorption by carbons in areas such as environmental protection and energy storage constitute the last section of the book. - Encompasses fundamental science of adsorption by carbons, in one location, supporting current R&D without extensive literature review - Describes adsorption as it is currently applied to major novel types of carbon materials, including carbon gels, carbide-derived carbons, zeolite-templated carbvons, hydrothermal carbons, carbon nanohorns and graphene - Specific discussion of fuel storage, environmental remediation and biomedical applications, of contemporary interest to many surface chemists and applications-focused researchers

Emission and Control of Trace Elements from Coal-Derived Gas Streams

Emission and Control of Trace Elements from Coal-Derived Gas Streams PDF Author: Yongchun Zhao
Publisher: Woodhead Publishing
ISBN: 0081026528
Category : Science
Languages : en
Pages : 426

Get Book Here

Book Description
Emission and Control of Trace Elements from Coal-Derived Gas Streams presents an up-to-date and focused analysis on Trace element (TEs) emissions and control strategies during coal utilization. This book provides insights into how TE's in coal are distributed from different coal-forming periods, coal ranks and coal-bearing regions. As the emission and control of TEs during coal utilization are a significant concern, this book introduces TEs in coal and pollution in an accessible way before discussing why they occur and how they are distributed during various stages of coal forming, also considering various regions and countries. Specific types of TEs in relation to partition in coal combustion, coal fires, gasification and coal feed furnace are then analyzed, providing the reader with practical knowledge to apply to their own research or projects. This book is an essential reference for energy engineers researching and working in coal technology, with a specific focus on emission control, as well as graduate students and researchers in energy engineering, environmental, thermal and chemical engineering who have an interest in trace element emission and control from coal utilization. - Presents characteristics of TE emissions during coal utilization in laboratory-scale experiments, industrial furnaces and power plants - Considers different legislation and case studies from various regions and countries - Includes contributions from world renowned experts - Presents a concise and focused analysis on TE emissions and control strategies

ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL.

ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This is a Technical Report under a program funded by the Department of Energy's National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. During this reporting period, several sorbent samples have been tested by URS in their laboratory fixed-bed system. The sorbents were evaluated under conditions simulating flue gas from power plants burning Powder River Basin (PRB) and low sulfur eastern bituminous coals. The equilibrium adsorption capacities of the sorbents for both elemental and oxidized mercury are presented. A team meeting discussing the overall program and meetings with Midwest Generation and Wisconsin Electric Power Company (WEPCO) concerning field testing occurred during this reporting period.

Green Adsorbents for Pollutant Removal

Green Adsorbents for Pollutant Removal PDF Author: Grégorio Crini
Publisher: Springer
ISBN: 3319921622
Category : Science
Languages : en
Pages : 410

Get Book Here

Book Description
This is the second volume on adsorption using green adsorbents and is written by international contributors who are the leading experts in the adsorption field. Together with the first volume they show a typical selection of green materials used in wastewater treatment, with emphasis on industrial effluents. This second volume focuses on innovative materials. It presents hemp-based materials for metal removal, and the use of leaves for metal removal. It describes the biosorption of metals and metalloids on various materials and discusses the recent advances in cellulose-based adsorbents used in environmental purposes. Furthermore, activated carbons from food wastes, aerogels and bones, and municipal solid waste biochar as efficient materials for pollutant removal, respectively are reviewed as well as biosorption of dyes onto microbial biosorbents and the use of mushroom biomass to remove pollutants are looked at. The volume also includes detailed review of green adsorbents for removal of antibiotics, pesticides and endocrine disruptors and the use of pillared interlayered clays as innovative materials for pollutant removal. Finally, the use of green adsorbents for radioactive pollutant removal from natural water is discussed. The audience for this book includes students, environmentalists, engineers, water scientists, civil and industrial personnel who wish to specialize in adsorption technology. Academically, this book will be of use to students in chemical and environmental engineering who wish to learn about adsorption and its fundamentals. It has also been compiled for practicing engineers who wish to know about recent developments on adsorbent materials in order to promote further research toward improving and developing newer adsorbents and processes for the efficient removal of pollutants from industrial effluents. It is hoped that the book will serve as a readable and useful presentation not only for undergraduate and postgraduate students but also for the water scientists and engineers and as a convenient reference handbook in the form of numerous recent examples and appended information.