Single Cell Analysis

Single Cell Analysis PDF Author: Tuhin Subhra Santra
Publisher: MDPI
ISBN: 3036506284
Category : Science
Languages : en
Pages : 254

Get Book Here

Book Description
Cells are the most fundamental building block of all living organisms. The investigation of any type of disease mechanism and its progression still remains challenging due to cellular heterogeneity characteristics and physiological state of cells in a given population. The bulk measurement of millions of cells together can provide some general information on cells, but it cannot evolve the cellular heterogeneity and molecular dynamics in a certain cell population. Compared to this bulk or the average measurement of a large number of cells together, single-cell analysis can provide detailed information on each cell, which could assist in developing an understanding of the specific biological context of cells, such as tumor progression or issues around stem cells. Single-cell omics can provide valuable information about functional mutation and a copy number of variations of cells. Information from single-cell investigations can help to produce a better understanding of intracellular interactions and environmental responses of cellular organelles, which can be beneficial for therapeutics development and diagnostics purposes. This Special Issue is inviting articles related to single-cell analysis and its advantages, limitations, and future prospects regarding health benefits.

Single Cell Analysis

Single Cell Analysis PDF Author: Tuhin Subhra Santra
Publisher: MDPI
ISBN: 3036506284
Category : Science
Languages : en
Pages : 254

Get Book Here

Book Description
Cells are the most fundamental building block of all living organisms. The investigation of any type of disease mechanism and its progression still remains challenging due to cellular heterogeneity characteristics and physiological state of cells in a given population. The bulk measurement of millions of cells together can provide some general information on cells, but it cannot evolve the cellular heterogeneity and molecular dynamics in a certain cell population. Compared to this bulk or the average measurement of a large number of cells together, single-cell analysis can provide detailed information on each cell, which could assist in developing an understanding of the specific biological context of cells, such as tumor progression or issues around stem cells. Single-cell omics can provide valuable information about functional mutation and a copy number of variations of cells. Information from single-cell investigations can help to produce a better understanding of intracellular interactions and environmental responses of cellular organelles, which can be beneficial for therapeutics development and diagnostics purposes. This Special Issue is inviting articles related to single-cell analysis and its advantages, limitations, and future prospects regarding health benefits.

Introduction to Single Cell Omics

Introduction to Single Cell Omics PDF Author: Xinghua Pan
Publisher: Frontiers Media SA
ISBN: 2889459209
Category :
Languages : en
Pages : 129

Get Book Here

Book Description
Single-cell omics is a progressing frontier that stems from the sequencing of the human genome and the development of omics technologies, particularly genomics, transcriptomics, epigenomics and proteomics, but the sensitivity is now improved to single-cell level. The new generation of methodologies, especially the next generation sequencing (NGS) technology, plays a leading role in genomics related fields; however, the conventional techniques of omics require number of cells to be large, usually on the order of millions of cells, which is hardly accessible in some cases. More importantly, harnessing the power of omics technologies and applying those at the single-cell level are crucial since every cell is specific and unique, and almost every cell population in every systems, derived in either vivo or in vitro, is heterogeneous. Deciphering the heterogeneity of the cell population hence becomes critical for recognizing the mechanism and significance of the system. However, without an extensive examination of individual cells, a massive analysis of cell population would only give an average output of the cells, but neglect the differences among cells. Single-cell omics seeks to study a number of individual cells in parallel for their different dimensions of molecular profile on genome-wide scale, providing unprecedented resolution for the interpretation of both the structure and function of an organ, tissue or other system, as well as the interaction (and communication) and dynamics of single cells or subpopulations of cells and their lineages. Importantly single-cell omics enables the identification of a minor subpopulation of cells that may play a critical role in biological process over a dominant subpolulation such as a cancer and a developing organ. It provides an ultra-sensitive tool for us to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. Besides, it also empowers the clinical investigation of patients when facing a very low quantity of cell available for analysis, such as noninvasive cancer screening with circulating tumor cells (CTC), noninvasive prenatal diagnostics (NIPD) and preimplantation genetic test (PGT) for in vitro fertilization. Single-cell omics greatly promotes the understanding of life at a more fundamental level, bring vast applications in medicine. Accordingly, single-cell omics is also called as single-cell analysis or single-cell biology. Within only a couple of years, single-cell omics, especially transcriptomic sequencing (scRNA-seq), whole genome and exome sequencing (scWGS, scWES), has become robust and broadly accessible. Besides the existing technologies, recently, multiplexing barcode design and combinatorial indexing technology, in combination with microfluidic platform exampled by Drop-seq, or even being independent of microfluidic platform but using a regular PCR-plate, enable us a greater capacity of single cell analysis, switching from one single cell to thousands of single cells in a single test. The unique molecular identifiers (UMIs) allow the amplification bias among the original molecules to be corrected faithfully, resulting in a reliable quantitative measurement of omics in single cells. Of late, a variety of single-cell epigenomics analyses are becoming sophisticated, particularly single cell chromatin accessibility (scATAC-seq) and CpG methylation profiling (scBS-seq, scRRBS-seq). High resolution single molecular Fluorescence in situ hybridization (smFISH) and its revolutionary versions (ex. seqFISH, MERFISH, and so on), in addition to the spatial transcriptome sequencing, make the native relationship of the individual cells of a tissue to be in 3D or 4D format visually and quantitatively clarified. On the other hand, CRISPR/cas9 editing-based In vivo lineage tracing methods enable dynamic profile of a whole developmental process to be accurately displayed. Multi-omics analysis facilitates the study of multi-dimensional regulation and relationship of different elements of the central dogma in a single cell, as well as permitting a clear dissection of the complicated omics heterogeneity of a system. Last but not the least, the technology, biological noise, sequence dropout, and batch effect bring a huge challenge to the bioinformatics of single cell omics. While significant progress in the data analysis has been made since then, revolutionary theory and algorithm logics for single cell omics are expected. Indeed, single-cell analysis exert considerable impacts on the fields of biological studies, particularly cancers, neuron and neural system, stem cells, embryo development and immune system; other than that, it also tremendously motivates pharmaceutic RD, clinical diagnosis and monitoring, as well as precision medicine. This book hereby summarizes the recent developments and general considerations of single-cell analysis, with a detailed presentation on selected technologies and applications. Starting with the experimental design on single-cell omics, the book then emphasizes the consideration on heterogeneity of cancer and other systems. It also gives an introduction of the basic methods and key facts for bioinformatics analysis. Secondary, this book provides a summary of two types of popular technologies, the fundamental tools on single-cell isolation, and the developments of single cell multi-omics, followed by descriptions of FISH technologies, though other popular technologies are not covered here due to the fact that they are intensively described here and there recently. Finally, the book illustrates an elastomer-based integrated fluidic circuit that allows a connection between single cell functional studies combining stimulation, response, imaging and measurement, and corresponding single cell sequencing. This is a model system for single cell functional genomics. In addition, it reports a pipeline for single-cell proteomics with an analysis of the early development of Xenopus embryo, a single-cell qRT-PCR application that defined the subpopulations related to cell cycling, and a new method for synergistic assembly of single cell genome with sequencing of amplification product by phi29 DNA polymerase. Due to the tremendous progresses of single-cell omics in recent years, the topics covered here are incomplete, but each individual topic is excellently addressed, significantly interesting and beneficial to scientists working in or affiliated with this field.

Biosensors for Single-Cell Analysis

Biosensors for Single-Cell Analysis PDF Author: Jian Chen
Publisher: Academic Press
ISBN: 0323885594
Category : Science
Languages : en
Pages : 184

Get Book Here

Book Description
Biosensors for Single-Cell Analysis explores a wide range of biosensor technologies and their applications in single-cell characterization and analysis. Sections cover key biophysical and chemical single-cell properties that consider proteomic, metabolic, electrical, mechanical and optical properties. Each chapter features key definitions and case studies, providing detailed guidance for researchers who want to replicate covered solutions in their work. Tutorial sections, evaluations of the current state-of-the-field and future developments are also included. Microfluidic approaches to characterization, such as microfluidic impedance flow cytometry and microfluidic flow cytometry are considered alongside more conventional approaches, such as mass spectroscopy, fluorescent and mass flow cytometry. Additionally, key types of biosensors are covered, including atomic force microscopy, micropipette aspiration, optical tweezers, microfluidic hydrodynamic stretchers, microfluidic constriction channel and microfluidic optical stretchers. - Includes chapters focused on key single-cell properties, such as proteomic, metabolic and mechanical characterization - Features case studies that illustrate the application of biosensors for single-cell analysis - Considers microfluidic approaches for each single-cell property discussed - Explores future directions for single-cell analysis and biosensor technology

Proteomics Sample Preparation

Proteomics Sample Preparation PDF Author: Jörg von Hagen
Publisher: John Wiley & Sons
ISBN: 3527644695
Category : Science
Languages : en
Pages : 498

Get Book Here

Book Description
This long-awaited first guide to sample preparation for proteomics studies overcomes a major bottleneck in this fast growing technique within the molecular life sciences. By addressing the topic from three different angles -- sample, method and aim of the study -- this practical reference has something for every proteomics researcher. Following an introduction to the field, the book looks at sample preparation for specific techniques and applications and finishes with a section on the preparation of sample types. For each method described, a summary of the pros and cons is given, as well as step-by-step protocols adaptable to any specific proteome analysis task.

ADME-Enabling Technologies in Drug Design and Development

ADME-Enabling Technologies in Drug Design and Development PDF Author: Donglu Zhang
Publisher: John Wiley & Sons
ISBN: 0470542780
Category : Science
Languages : en
Pages : 628

Get Book Here

Book Description
A comprehensive guide to cutting-edge tools in ADME research The last decade has seen tremendous progress in the development of analytical techniques such as mass spectrometry and molecular biology tools, resulting in important advances in drug discovery, particularly in the area of absorption, distribution, metabolism, and excretion (ADME). ADME-Enabling Technologies in Drug Design and Development focuses on the current state of the art in the field, presenting a comprehensive review of the latest tools for generating ADME data in drug discovery. It examines the broadest possible range of available technologies, giving readers the information they need to choose the right tool for a given application, a key requisite for obtaining favorable results in a timely fashion for regulatory filings. With over thirty contributed chapters by an international team of experts, the book provides: A thorough examination of current tools, covering both electronic/mechanical technologies and biologically based ones Coverage of applications for each technology, including key parameters, optimal conditions for intended results, protocols, and case studies Detailed discussion of emerging tools and techniques, from stem cells and genetically modified animal models to imaging technologies Numerous figures and diagrams throughout the text Scientists and researchers in drug metabolism, pharmacology, medicinal chemistry, pharmaceutics, toxicology, and bioanalytical science will find ADME-Enabling Technologies in Drug Design and Development an invaluable guide to the entire drug development process, from discovery to regulatory issues.

New Frontiers in Ultrasensitive Bioanalysis

New Frontiers in Ultrasensitive Bioanalysis PDF Author: Xiao-Hong Nancy Xu
Publisher: John Wiley & Sons
ISBN: 0470119497
Category : Science
Languages : en
Pages : 338

Get Book Here

Book Description
An overview of current research and developments in ultrasensitive bioanalysis New platforms of ultrasensitive analysis of biomolecules and single living cells using multiplexing, single nanoparticle sensing, nano-fluidics, and single-molecule detection are advancing every scientific discipline at an unprecedented pace. With chapters written by a diverse group of scientists working in the forefront of ultrasensitive bioanalysis, this book provides an overview of the current status and an in-depth understanding of the objectives and future research directions of ultrasensitive bioanalysis. Spanning a wide spectrum of new research approaches, this book: Introduces new theories, ideas, methodologies, technologies, and applications of ultrasensitive bioanalysis in a wide variety of research fields Includes background, fundamentals, and descriptions of instrumentation and techniques behind every experimental design and approach to help readers explore the promising applications of new tools Covers single molecule detection (SMD), single living cell analysis, multi-functional nanoparticle probes, miniaturization, multiplexing, quantitative and qualitative analysis of metal ions and small molecules, and more Discusses techniques such as single molecule microscope and spectroscopy, single nanoparticle optics, single nanoparticle sensors, micro- and nano-fluidics, microarray detection, ultramicroelectrodes, electrochemiluminescence, mass spectrometry, and more This book will be a useful resource and an inspiration for scientists and graduate and undergraduate students in a wide variety of research fields, including chemistry, biology, biomedical science and engineering, and materials science and engineering.

Pharmacoproteomics

Pharmacoproteomics PDF Author: Seth Kwabena Amponsah
Publisher: Springer Nature
ISBN: 3031640217
Category : Pharmacology
Languages : en
Pages : 480

Get Book Here

Book Description
This book gives an overview of pharmacoproteomics and its clinical applications, as well as the latest information on drug mechanisms at the proteome level, the relationship between proteomics and toxicity or resistance, and how proteomics aid in discovery of new drug targets. The book also highlights recent advances in analytical methods, analysis, and interpretation of pharmacoproteomic data. Pharmacoproteomics: Recent Trends and Applications is an ideal book for those working in pharmaceutical industries, as well as scientists, health care professionals, and researchers who work in the field of genomics, pharmacology, pharmacokinetics, toxicology, and pharmaceutical chemistry.

Essentials of Single-Cell Analysis

Essentials of Single-Cell Analysis PDF Author: Fan-Gang Tseng
Publisher: Springer
ISBN: 3662491184
Category : Technology & Engineering
Languages : en
Pages : 415

Get Book Here

Book Description
This book provides an overview of single-cell isolation, separation, injection, lysis and dynamics analysis as well as a study of their heterogeneity using different miniaturized devices. As an important part of single-cell analysis, different techniques including electroporation, microinjection, optical trapping, optoporation, rapid electrokinetic patterning and optoelectronic tweezers are described in detail. It presents different fluidic systems (e.g. continuous micro/nano-fluidic devices, microfluidic cytometry) and their integration with sensor technology, optical and hydrodynamic stretchers etc., and demonstrates the applications of single-cell analysis in systems biology, proteomics, genomics, epigenomics, cancer transcriptomics, metabolomics, biomedicine and drug delivery systems. It also discusses the future challenges for single-cell analysis, including the advantages and limitations. This book is enjoyable reading material while at the same time providing essential information to scientists in academia and professionals in industry working on different aspects of single-cell analysis. Dr. Fan-Gang Tseng is a Distinguished Professor of Engineering and System Science at the National Tsing Hua University, Taiwan. Dr. Tuhin Subhra Santra is a Research Associate at the California Nano Systems Institute, University of California at Los Angeles, USA.

Chemical Imaging Analysis

Chemical Imaging Analysis PDF Author: Freddy Adams
Publisher: Elsevier
ISBN: 0444634509
Category : Science
Languages : en
Pages : 493

Get Book Here

Book Description
Chemical Imaging Analysis covers the advancements made over the last 50 years in chemical imaging analysis, including different analytical techniques and the ways they were developed and refined to link the composition and structure of manmade and natural materials at the nano/micro scale to the functional behavior at the macroscopic scale. In a development process that started in the early 1960s, a variety of specialized analytical techniques was developed – or adapted from existing techniques – and these techniques have matured into versatile and powerful tools for visualizing structural and compositional heterogeneity. This text explores that journey, providing a general overview of imaging techniques in diverse fields, including mass spectrometry, optical spectrometry including X-rays, electron microscopy, and beam techniques. - Provides comprehensive coverage of analytical techniques used in chemical imaging analysis - Explores a variety of specialized techniques - Provides a general overview of imaging techniques in diverse fields

Metallomics

Metallomics PDF Author: Marco Aurélio Zezzi Arruda
Publisher: Springer
ISBN: 3319901435
Category : Science
Languages : en
Pages : 287

Get Book Here

Book Description
This book covers the new Omics area, Metallomics. As Metallomics is intrinsically a transdisciplinary area, this book is authored by experts in the field on such diverse topics as Environmental, Nuclear, and Human Metallomics. Within these topics metals play important role, as being part of biomolecules, controlling different biochemical process, being signaling agents, being catalyst of biochemical reactions, among others. This volume demonstrates the importance of more investigation about metals and their interactions with biomolecules. As the knowledge in this field is growing and growing daily, then new challenges concerning studies involving Metallomics is appearing, such as comparative metallomics, speciation metallomics, real-time metallomics, new predictions of metals in biomolecules, metalloprotein databank expansion, interactions between metalloprotein-metalloprotein, among others.