Development of Capacitive and Piezoelectric Based MEMS Resonant Accelerometers

Development of Capacitive and Piezoelectric Based MEMS Resonant Accelerometers PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

Development of Capacitive and Piezoelectric Based MEMS Resonant Accelerometers

Development of Capacitive and Piezoelectric Based MEMS Resonant Accelerometers PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


MEMS Silicon Oscillating Accelerometers and Readout Circuits

MEMS Silicon Oscillating Accelerometers and Readout Circuits PDF Author: Xu, Yong Ping
Publisher: River Publishers
ISBN: 877022045X
Category : Technology & Engineering
Languages : en
Pages : 312

Get Book Here

Book Description
Most MEMS accelerometers on the market today are capacitive accelerometers that are based on the displacement sensing mechanism. This book is intended to cover recent developments of MEMS silicon oscillating accelerometers (SOA), also referred to as MEMS resonant accelerometer. As contrast to the capacitive accelerometer, the MEMS SOA is based on the force sensing mechanism, where the input acceleration is converted to a frequency output. MEMS Silicon Oscillating Accelerometers and Readout Circuits consists of six chapters and covers both MEMS sensor and readout circuit, and provides an in-depth coverage on the design and modelling of the MEMS SOA with several recently reported prototypes. The book is not only useful to researchers and engineers who are familiar with the topic, but also appeals to those who have general interests in MEMS inertial sensors. The book includes extensive references that provide further information on this topic.

Modeling and simulation of the capacitive accelerometer

Modeling and simulation of the capacitive accelerometer PDF Author: Tan Tran Duc
Publisher: GRIN Verlag
ISBN: 3640249593
Category : Technology & Engineering
Languages : en
Pages : 83

Get Book Here

Book Description
Diploma Thesis from the year 2005 in the subject Electrotechnology, grade: Master 9.8/10, , language: English, abstract: Microelectromechanical systems (MEMS) are collection of microsensors and actuators that have the ability to sense its environment and react to changes in that environment with the use of a microcircuit control. They also include the conventional microelectronics packaging, integrating antenna structures for command signals into microelectromechanical structures for desired sensing and actuating functions. The system may also need micropower supply, microrelay, and microsignal processing units. Microcomponents make the system faster, more reliable, cheaper, and capable of incorporating more complex functions. In the beginning of 1990s, MEMS appeared with the aid of the development of integrated circuit fabrication processes, in which sensors, actuators, and control functions are co-fabricated in silicon [1]. Since then, remarkable research progresses have been achieved in MEMS under the strong promotions from both government and industries. In addition to the commercialization of some less integrated MEMS devices, such as microaccelerometers, inkjet printer head, micromirrors for projection, etc., the concepts and feasibility of more complex MEMS devices have been proposed and demonstrated for the applications in such varied fields as microfluidics, aerospace, biomedical, chemical analysis, wireless communications, data storage, display, optics, etc. Some branches of MEMS, appearing as microoptoelectromechanical systems (MOEMS), micro total analysis systems, etc., have attracted a great research since their potential applications’ market.

Resonant MEMS

Resonant MEMS PDF Author: Oliver Brand
Publisher: John Wiley & Sons
ISBN: 3527335455
Category : Technology & Engineering
Languages : en
Pages : 512

Get Book Here

Book Description
Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.

MEMS Accelerometers

MEMS Accelerometers PDF Author: Mahmoud Rasras
Publisher: MDPI
ISBN: 3038974145
Category : Technology & Engineering
Languages : en
Pages : 252

Get Book Here

Book Description
Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc. This Special Issue on "MEMS Accelerometers" seeks to highlight research papers, short communications, and review articles that focus on: Novel designs, fabrication platforms, characterization, optimization, and modeling of MEMS accelerometers. Alternative transduction techniques with special emphasis on opto-mechanical sensing. Novel applications employing MEMS accelerometers for consumer electronics, industries, medicine, entertainment, navigation, etc. Multi-physics design tools and methodologies, including MEMS-electronics co-design. Novel accelerometer technologies and 9DoF IMU integration. Multi-accelerometer platforms and their data fusion.

Fabrication of High-frequency Piezoelectric Resonant Micro-accelerometers Based on Capacitive Loading Effect

Fabrication of High-frequency Piezoelectric Resonant Micro-accelerometers Based on Capacitive Loading Effect PDF Author: Ankesh Todi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
In this thesis, a high-frequency resonant accelerometer is presented. This novel sensor was designed to operate in 10’s of MHz frequency range utilizing an out-of-plane capacitive mechanism for acceleration sensing. The sensor is comprised of a 2-port RF MEMS piezoelectric resonator, operating at 27MHz, and a Capacitive Mass-spring structure. One of the resonator ports is electrically connected to the variable capacitor in the mass-spring structure. The acceleration is measured utilizing a piezoelectric stiffening mechanism, where a change in the termination impedance of a piezoelectric resonant body would result in a shift in the resonance frequency of the resonator. The acceleration is extracted from the frequency-modulated output signal of the resonator. The sensors were fabricated on a silicon-on-insulator wafer coated with a thin film of sputtered aluminum nitride as the piezoelectric transducer. Initial test results show a ~600Hz shift in resonance frequency in response to ±1g of acceleration (~300Hz/g sensitivity).

Piezoceramic Sensors

Piezoceramic Sensors PDF Author: Valeriy Sharapov
Publisher: Springer Science & Business Media
ISBN: 3642153119
Category : Science
Languages : en
Pages : 503

Get Book Here

Book Description
This book presents the latest and complete information about various types of piezosensors. A sensor is a converter of the measured physical size to an electric signal. Piezoelectric transducers and sensors are based on piezoelectric effects. They have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries. In each area of application specific requirements to the parameters of transducers and sensors are developed. The book presents the fundamentals, technical design and details and practical applications. Methods to design piezosensors are described, allowing to create sensors with unique properties. New methods to measure physical sizes and new constructions of sensors including large area of piezosensors are described in this book. This book is written for specialists in transforming hydroacoustics, non-destructive control, measuring technique, sensors development for automatic control and also for graduate students.

Piezoelectric MEMS Resonators

Piezoelectric MEMS Resonators PDF Author: Harmeet Bhugra
Publisher: Springer
ISBN: 3319286889
Category : Technology & Engineering
Languages : en
Pages : 423

Get Book Here

Book Description
This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associated with testing and qualification Examples of commercialization paths for piezoelectric MEMS resonators in the timing and the filter markets ...and more! The authors present industry and academic perspectives, making this book ideal for engineers, graduate students, and researchers.

Electromechanics and MEMS

Electromechanics and MEMS PDF Author: Thomas B. Jones
Publisher: Cambridge University Press
ISBN: 0521764831
Category : Technology & Engineering
Languages : en
Pages : 581

Get Book Here

Book Description
A comprehensive MEMS textbook, with worked examples and numerous homework problems.

Inertial MEMS

Inertial MEMS PDF Author: Volker Kempe
Publisher: Cambridge University Press
ISBN: 1139494821
Category : Technology & Engineering
Languages : en
Pages : 497

Get Book Here

Book Description
A practical and systematic overview of the design, fabrication and test of MEMS-based inertial sensors, this comprehensive and rigorous guide shows you how to analyze and transform application requirements into practical designs, and helps you to avoid potential pitfalls and to cut design time. With this book you'll soon be up to speed on the relevant basics, including MEMS technologies, packaging, kinematics and mechanics, and transducers. You'll also get a thorough evaluation of different approaches and architectures for design and an overview of key aspects of testing and calibration. Unique insights into the practical difficulties of making sensors for real-world applications make this up-to-date description of the state of the art in inertial MEMS an ideal resource for professional engineers in industry as well as students looking for a complete introduction to the area.