Author: Matteo Bianchi
Publisher: Springer Nature
ISBN: 3030376850
Category : Technology & Engineering
Languages : en
Pages : 116
Book Description
This book describes the development of portable, wearable, and highly customizable hand exoskeletons to aid patients suffering from hand disabilities. It presents an original approach for the design of human hand motion assistance devices that relies on (i) an optimization-based kinematic scaling procedure, which guarantees a significant adaptability to the user’s hands motion, and (ii) a topology optimization-based design methodology, which allowed the design of a lightweight, comfortable device with a high level of performance. The book covers the whole process of hand exoskeleton development, from establishing a new design strategy, to the construction and testing of hand exoskeleton prototypes, using additive manufacturing techniques. As such, it offers timely information to both researchers and engineers developing human motion assistance systems, especially wearable ones.
Development and Testing of Hand Exoskeletons
Author: Matteo Bianchi
Publisher: Springer Nature
ISBN: 3030376850
Category : Technology & Engineering
Languages : en
Pages : 116
Book Description
This book describes the development of portable, wearable, and highly customizable hand exoskeletons to aid patients suffering from hand disabilities. It presents an original approach for the design of human hand motion assistance devices that relies on (i) an optimization-based kinematic scaling procedure, which guarantees a significant adaptability to the user’s hands motion, and (ii) a topology optimization-based design methodology, which allowed the design of a lightweight, comfortable device with a high level of performance. The book covers the whole process of hand exoskeleton development, from establishing a new design strategy, to the construction and testing of hand exoskeleton prototypes, using additive manufacturing techniques. As such, it offers timely information to both researchers and engineers developing human motion assistance systems, especially wearable ones.
Publisher: Springer Nature
ISBN: 3030376850
Category : Technology & Engineering
Languages : en
Pages : 116
Book Description
This book describes the development of portable, wearable, and highly customizable hand exoskeletons to aid patients suffering from hand disabilities. It presents an original approach for the design of human hand motion assistance devices that relies on (i) an optimization-based kinematic scaling procedure, which guarantees a significant adaptability to the user’s hands motion, and (ii) a topology optimization-based design methodology, which allowed the design of a lightweight, comfortable device with a high level of performance. The book covers the whole process of hand exoskeleton development, from establishing a new design strategy, to the construction and testing of hand exoskeleton prototypes, using additive manufacturing techniques. As such, it offers timely information to both researchers and engineers developing human motion assistance systems, especially wearable ones.
Wearable Robotics
Author: Jacob Rosen
Publisher: Academic Press
ISBN: 0128146605
Category : Science
Languages : en
Pages : 551
Book Description
Wearable Robotics: Systems and Applications provides a comprehensive overview of the entire field of wearable robotics, including active orthotics (exoskeleton) and active prosthetics for the upper and lower limb and full body. In its two major sections, wearable robotics systems are described from both engineering perspectives and their application in medicine and industry. Systems and applications at various levels of the development cycle are presented, including those that are still under active research and development, systems that are under preliminary or full clinical trials, and those in commercialized products. This book is a great resource for anyone working in this field, including researchers, industry professionals and those who want to use it as a teaching mechanism. - Provides a comprehensive overview of the entire field, with both engineering and medical perspectives - Helps readers quickly and efficiently design and develop wearable robotics for healthcare applications
Publisher: Academic Press
ISBN: 0128146605
Category : Science
Languages : en
Pages : 551
Book Description
Wearable Robotics: Systems and Applications provides a comprehensive overview of the entire field of wearable robotics, including active orthotics (exoskeleton) and active prosthetics for the upper and lower limb and full body. In its two major sections, wearable robotics systems are described from both engineering perspectives and their application in medicine and industry. Systems and applications at various levels of the development cycle are presented, including those that are still under active research and development, systems that are under preliminary or full clinical trials, and those in commercialized products. This book is a great resource for anyone working in this field, including researchers, industry professionals and those who want to use it as a teaching mechanism. - Provides a comprehensive overview of the entire field, with both engineering and medical perspectives - Helps readers quickly and efficiently design and develop wearable robotics for healthcare applications
Wearable Exoskeleton Systems
Author: Shaoping Bai
Publisher: Institution of Engineering and Technology
ISBN: 1785613022
Category : Technology & Engineering
Languages : en
Pages : 405
Book Description
Wearable exoskeletons are electro-mechanical systems designed to assist, augment, or enhance motion and mobility in a variety of human motion applications and scenarios. The applications, ranging from providing power supplementation to assist the wearers to situations where human motion is resisted for exercising applications, cover a wide range of domains such as medical devices for patient rehabilitation training recovering from trauma, movement aids for disabled persons, personal care robots for providing daily living assistance, and reduction of physical burden in industrial and military applications. The development of effective and affordable wearable exoskeletons poses several design, control and modelling challenges to researchers and manufacturers. Novel technologies are therefore being developed in adaptive motion controllers, human-robot interaction control, biological sensors and actuators, materials and structures, etc.
Publisher: Institution of Engineering and Technology
ISBN: 1785613022
Category : Technology & Engineering
Languages : en
Pages : 405
Book Description
Wearable exoskeletons are electro-mechanical systems designed to assist, augment, or enhance motion and mobility in a variety of human motion applications and scenarios. The applications, ranging from providing power supplementation to assist the wearers to situations where human motion is resisted for exercising applications, cover a wide range of domains such as medical devices for patient rehabilitation training recovering from trauma, movement aids for disabled persons, personal care robots for providing daily living assistance, and reduction of physical burden in industrial and military applications. The development of effective and affordable wearable exoskeletons poses several design, control and modelling challenges to researchers and manufacturers. Novel technologies are therefore being developed in adaptive motion controllers, human-robot interaction control, biological sensors and actuators, materials and structures, etc.
Wearable Robots
Author: José L. Pons
Publisher: John Wiley & Sons
ISBN: 0470987650
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
A wearable robot is a mechatronic system that is designed around the shape and function of the human body, with segments and joints corresponding to those of the person it is externally coupled with. Teleoperation and power amplification were the first applications, but after recent technological advances the range of application fields has widened. Increasing recognition from the scientific community means that this technology is now employed in telemanipulation, man-amplification, neuromotor control research and rehabilitation, and to assist with impaired human motor control. Logical in structure and original in its global orientation, this volume gives a full overview of wearable robotics, providing the reader with a complete understanding of the key applications and technologies suitable for its development. The main topics are demonstrated through two detailed case studies; one on a lower limb active orthosis for a human leg, and one on a wearable robot that suppresses upper limb tremor. These examples highlight the difficulties and potentialities in this area of technology, illustrating how design decisions should be made based on these. As well as discussing the cognitive interaction between human and robot, this comprehensive text also covers: the mechanics of the wearable robot and it’s biomechanical interaction with the user, including state-of-the-art technologies that enable sensory and motor interaction between human (biological) and wearable artificial (mechatronic) systems; the basis for bioinspiration and biomimetism, general rules for the development of biologically-inspired designs, and how these could serve recursively as biological models to explain biological systems; the study on the development of networks for wearable robotics. Wearable Robotics: Biomechatronic Exoskeletons will appeal to lecturers, senior undergraduate students, postgraduates and other researchers of medical, electrical and bio engineering who are interested in the area of assistive robotics. Active system developers in this sector of the engineering industry will also find it an informative and welcome resource.
Publisher: John Wiley & Sons
ISBN: 0470987650
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
A wearable robot is a mechatronic system that is designed around the shape and function of the human body, with segments and joints corresponding to those of the person it is externally coupled with. Teleoperation and power amplification were the first applications, but after recent technological advances the range of application fields has widened. Increasing recognition from the scientific community means that this technology is now employed in telemanipulation, man-amplification, neuromotor control research and rehabilitation, and to assist with impaired human motor control. Logical in structure and original in its global orientation, this volume gives a full overview of wearable robotics, providing the reader with a complete understanding of the key applications and technologies suitable for its development. The main topics are demonstrated through two detailed case studies; one on a lower limb active orthosis for a human leg, and one on a wearable robot that suppresses upper limb tremor. These examples highlight the difficulties and potentialities in this area of technology, illustrating how design decisions should be made based on these. As well as discussing the cognitive interaction between human and robot, this comprehensive text also covers: the mechanics of the wearable robot and it’s biomechanical interaction with the user, including state-of-the-art technologies that enable sensory and motor interaction between human (biological) and wearable artificial (mechatronic) systems; the basis for bioinspiration and biomimetism, general rules for the development of biologically-inspired designs, and how these could serve recursively as biological models to explain biological systems; the study on the development of networks for wearable robotics. Wearable Robotics: Biomechatronic Exoskeletons will appeal to lecturers, senior undergraduate students, postgraduates and other researchers of medical, electrical and bio engineering who are interested in the area of assistive robotics. Active system developers in this sector of the engineering industry will also find it an informative and welcome resource.
sEMG-based Control Strategy for a Hand Exoskeleton System
Author: Nicola Secciani
Publisher: Springer Nature
ISBN: 3030902838
Category : Technology & Engineering
Languages : en
Pages : 103
Book Description
This book reports on the design and testing of an sEMG-based control strategy for a fully-wearable low-cost hand exoskeleton. It describes in detail the modifications carried out to the electronics of a previous prototype, covering in turn the implementation of an innovative sEMG classifier for predicting the wearer's motor intention and driving the exoskeleton accordingly. While similar classifier have been widely used for motor intention prediction, their application to wearable device control has been neglected so far. Thus, this book fills a gap in the literature providing readers with extensive information and a source of inspiration for the future design and control of medical and assistive devices.
Publisher: Springer Nature
ISBN: 3030902838
Category : Technology & Engineering
Languages : en
Pages : 103
Book Description
This book reports on the design and testing of an sEMG-based control strategy for a fully-wearable low-cost hand exoskeleton. It describes in detail the modifications carried out to the electronics of a previous prototype, covering in turn the implementation of an innovative sEMG classifier for predicting the wearer's motor intention and driving the exoskeleton accordingly. While similar classifier have been widely used for motor intention prediction, their application to wearable device control has been neglected so far. Thus, this book fills a gap in the literature providing readers with extensive information and a source of inspiration for the future design and control of medical and assistive devices.
Soft Robotics in Rehabilitation
Author: Amir Jafari
Publisher: Academic Press
ISBN: 0128185392
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Soft Robotics in Rehabilitation explores the specific branch of robotics dealing with developing robots from compliant and flexible materials. Unlike robots built from rigid materials, soft robots behave the way in which living organs move and adapt to their surroundings and allow for increased flexibility and adaptability for the user. This book is a comprehensive reference discussing the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs. The book examines various techniques applied in soft robotics, including the development of soft actuators, rigid actuators with soft behavior, intrinsically soft actuators, and soft sensors. This book is perfect for graduate students, researchers, and professional engineers in robotics, control, mechanical, and electrical engineering who are interested in soft robotics, artificial intelligence, rehabilitation therapy, and medical and rehabilitation device design and manufacturing. - Outlines the application of soft robotic techniques to design platforms that provide rehabilitation therapy for disabled persons to help improve their motor functions - Discusses the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs - Offers readers the ability to find soft robotics devices, methods, and results for any limb, and then compare the results with other options provided in the book
Publisher: Academic Press
ISBN: 0128185392
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Soft Robotics in Rehabilitation explores the specific branch of robotics dealing with developing robots from compliant and flexible materials. Unlike robots built from rigid materials, soft robots behave the way in which living organs move and adapt to their surroundings and allow for increased flexibility and adaptability for the user. This book is a comprehensive reference discussing the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs. The book examines various techniques applied in soft robotics, including the development of soft actuators, rigid actuators with soft behavior, intrinsically soft actuators, and soft sensors. This book is perfect for graduate students, researchers, and professional engineers in robotics, control, mechanical, and electrical engineering who are interested in soft robotics, artificial intelligence, rehabilitation therapy, and medical and rehabilitation device design and manufacturing. - Outlines the application of soft robotic techniques to design platforms that provide rehabilitation therapy for disabled persons to help improve their motor functions - Discusses the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs - Offers readers the ability to find soft robotics devices, methods, and results for any limb, and then compare the results with other options provided in the book
Neurorehabilitation Technology
Author: David J. Reinkensmeyer
Publisher: Springer Nature
ISBN: 3031089952
Category : Medical
Languages : en
Pages : 771
Book Description
This revised, updated, and substantially expanded third edition provides an accessible, practical overview of major areas of research, technical development and clinical application in the field of neurorehabilitation movement therapy. The initial section provides the basic framework and a rationale for technology application in movement therapy by summarizing recent findings in neuroplasticity and motor learning. The following section provides a detailed overview of the movement physiology of various neurologic conditions, illustrating how this knowledge has been used to design various neurorehabilitation technologies. The third section then explains the principles of human-machine interaction for movement rehabilitation. The fourth section provides an overview of assessment technology and predictive modeling in neurorehabilitation. The fifth section provides a survey of technological approaches to neurorehabilitation, including spinal cord stimulation, functional electrical stimulation, virtual reality, wearable sensing, brain computer interfaces, mobile technologies, and telerehabilitation. The final two sections examine in greater detail the ongoing revolution in robotic therapy for upper extremity movement and walking, respectively. The promises and limitations of these technologies in neurorehabilitation are discussed, including an Epilogue which debates the impact and utility of robotics for neurorehabilitation. Throughout the book the chapters provide detailed practical information on state-of-the-art clinical applications of these devices following stroke, spinal cord injury, and other neurologic disorders and future developments in the field. The text is illustrated throughout with photographs and schematic diagrams which serve to clarify the information for the reader. Neurorehabilitation Technology, Third Edition is a valuable resource for neurologists, biomedical engineers, roboticists, rehabilitation specialists, physiotherapists, occupational therapists and those training in these fields. Chapter “Spinal Cord Stimulation to Enable Leg Motor Control and Walking in People with Spinal Cord Injury is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Publisher: Springer Nature
ISBN: 3031089952
Category : Medical
Languages : en
Pages : 771
Book Description
This revised, updated, and substantially expanded third edition provides an accessible, practical overview of major areas of research, technical development and clinical application in the field of neurorehabilitation movement therapy. The initial section provides the basic framework and a rationale for technology application in movement therapy by summarizing recent findings in neuroplasticity and motor learning. The following section provides a detailed overview of the movement physiology of various neurologic conditions, illustrating how this knowledge has been used to design various neurorehabilitation technologies. The third section then explains the principles of human-machine interaction for movement rehabilitation. The fourth section provides an overview of assessment technology and predictive modeling in neurorehabilitation. The fifth section provides a survey of technological approaches to neurorehabilitation, including spinal cord stimulation, functional electrical stimulation, virtual reality, wearable sensing, brain computer interfaces, mobile technologies, and telerehabilitation. The final two sections examine in greater detail the ongoing revolution in robotic therapy for upper extremity movement and walking, respectively. The promises and limitations of these technologies in neurorehabilitation are discussed, including an Epilogue which debates the impact and utility of robotics for neurorehabilitation. Throughout the book the chapters provide detailed practical information on state-of-the-art clinical applications of these devices following stroke, spinal cord injury, and other neurologic disorders and future developments in the field. The text is illustrated throughout with photographs and schematic diagrams which serve to clarify the information for the reader. Neurorehabilitation Technology, Third Edition is a valuable resource for neurologists, biomedical engineers, roboticists, rehabilitation specialists, physiotherapists, occupational therapists and those training in these fields. Chapter “Spinal Cord Stimulation to Enable Leg Motor Control and Walking in People with Spinal Cord Injury is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Mechanism Design for Robotics
Author: Marco Ceccarelli
Publisher: MDPI
ISBN: 3039210580
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
MEDER 2018, the IFToMM International Symposium on Mechanism Design for Robotics, was the fourth event in a series that was started in 2010 as a specific conference activity on mechanisms for robots. The aim of the MEDER Symposium is to bring researchers, industry professionals, and students together from a broad range of disciplines dealing with mechanisms for robots, in an intimate, collegial, and stimulating environment. In the 2018 MEDER event, we received significant attention regarding this initiative, as can be seen by the fact that the Proceedings contain contributions by authors from all around the world. The Proceedings of the MEDER 2018 Symposium have been published within the Springer book series on MMS, and the book contains 52 papers that have been selected after review for oral presentation. These papers cover several aspects of the wide field of robotics dealing with mechanism aspects in theory, design, numerical evaluations, and applications. This Special Issue of Robotics (https://www.mdpi.com/journal/robotics/special_issues/MDR) has been obtained as a result of a second review process and selection, but all the papers that have been accepted for MEDER 2018 are of very good quality with interesting contents that are suitable for journal publication, and the selection process has been difficult.
Publisher: MDPI
ISBN: 3039210580
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
MEDER 2018, the IFToMM International Symposium on Mechanism Design for Robotics, was the fourth event in a series that was started in 2010 as a specific conference activity on mechanisms for robots. The aim of the MEDER Symposium is to bring researchers, industry professionals, and students together from a broad range of disciplines dealing with mechanisms for robots, in an intimate, collegial, and stimulating environment. In the 2018 MEDER event, we received significant attention regarding this initiative, as can be seen by the fact that the Proceedings contain contributions by authors from all around the world. The Proceedings of the MEDER 2018 Symposium have been published within the Springer book series on MMS, and the book contains 52 papers that have been selected after review for oral presentation. These papers cover several aspects of the wide field of robotics dealing with mechanism aspects in theory, design, numerical evaluations, and applications. This Special Issue of Robotics (https://www.mdpi.com/journal/robotics/special_issues/MDR) has been obtained as a result of a second review process and selection, but all the papers that have been accepted for MEDER 2018 are of very good quality with interesting contents that are suitable for journal publication, and the selection process has been difficult.
Human Performance Optimization
Author: Michael D. Matthews
Publisher:
ISBN: 0190455136
Category : Medical
Languages : en
Pages : 489
Book Description
Human Performance Optimization: The Science and Ethics of Enhancing Human Capabilities explores current and emerging strategies for enhancing individual and team performance, especially in high-stakes, stressful settings such as the military, law enforcement, firefighting, or competitive corporate settings. Taking a cognitive neuroscience perspective, scientifically grounded approaches to optimizing human performance are explored in depth.
Publisher:
ISBN: 0190455136
Category : Medical
Languages : en
Pages : 489
Book Description
Human Performance Optimization: The Science and Ethics of Enhancing Human Capabilities explores current and emerging strategies for enhancing individual and team performance, especially in high-stakes, stressful settings such as the military, law enforcement, firefighting, or competitive corporate settings. Taking a cognitive neuroscience perspective, scientifically grounded approaches to optimizing human performance are explored in depth.
New Advances in Mechanisms, Transmissions and Applications
Author: Victor Petuya
Publisher: Springer Science & Business Media
ISBN: 9400774850
Category : Technology & Engineering
Languages : en
Pages : 421
Book Description
The Second Conference on Mechanisms, Transmissions and Applications - MeTrApp 2013 was organised by the Mechanical Engineering Department of the University of the Basque Country (Spain) under the patronage of the IFToMM Technical Committees Linkages and Mechanical Controls and Micromachines and the Spanish Association of Mechanical Engineering. The aim of the workshop was to bring together researchers, scientists, industry experts and students to provide, in a friendly and stimulating environment, the opportunity to exchange know-how and promote collaboration in the field of Mechanism and Machine Science. The topics treated in this volume are mechanism and machine design, biomechanics, mechanical transmissions, mechatronics, computational and experimental methods, dynamics of mechanisms and micromechanisms and microactuators.
Publisher: Springer Science & Business Media
ISBN: 9400774850
Category : Technology & Engineering
Languages : en
Pages : 421
Book Description
The Second Conference on Mechanisms, Transmissions and Applications - MeTrApp 2013 was organised by the Mechanical Engineering Department of the University of the Basque Country (Spain) under the patronage of the IFToMM Technical Committees Linkages and Mechanical Controls and Micromachines and the Spanish Association of Mechanical Engineering. The aim of the workshop was to bring together researchers, scientists, industry experts and students to provide, in a friendly and stimulating environment, the opportunity to exchange know-how and promote collaboration in the field of Mechanism and Machine Science. The topics treated in this volume are mechanism and machine design, biomechanics, mechanical transmissions, mechatronics, computational and experimental methods, dynamics of mechanisms and micromechanisms and microactuators.