Developing a Nutrient Recovery Process for Recovering Nutrients in Anaerobic Digestate in Low Income Countries

Developing a Nutrient Recovery Process for Recovering Nutrients in Anaerobic Digestate in Low Income Countries PDF Author: Christopher Rose
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Anaerobic Biodigesters for Human Waste Treatment

Anaerobic Biodigesters for Human Waste Treatment PDF Author: Mukesh Kumar Meghvansi
Publisher: Springer Nature
ISBN: 9811949212
Category : Science
Languages : en
Pages : 284

Get Book Here

Book Description
The edited book brings out a comprehensive synthesis of latest scientific literature covering various important aspects of anaerobic biodigesters for human waste management that ranges from latest understanding on fundamental concepts/mechanisms of anaerobic biodigestion, modern tools and techniques used in process evaluation, current strategies being recruited for the performance enhancement, and case studies/ success stories across the world on applications of biodigesters used in human waste treatment. The anaerobic biodigestion is a process of break-down of organic waste by anaerobic microorganisms in absence of the oxygen. This process has been conventionally used for treating various types of organic waste including sewage sludge. After optimizing various process parameters, researchers have developed anaerobic biodigesters that have been successfully used for human waste (nigh soil) treatment. The topic of human waste treatment assumes global significance in the wake of UN sustainable Development Goals (SDG) wherein SDG-6 specifically highlights the Sanitation for all by 2030. The anaerobic Biodigester technology has the potential to manage the human waste as well and can contribute immensely in achieving targets of UN-SDG-6. This book is of interest to researchers, academicians, scientists, policy officials and capacity builders. Also the book serves as additional reading material for undergraduate and graduate students of environmental Biotechnology. National and international biotechnologists, environmental engineers and sanitation experts also find this to be a useful read.

New Processes for Nutrient Recovery from Wastes

New Processes for Nutrient Recovery from Wastes PDF Author: Matias B. Vanotti
Publisher: Frontiers Media SA
ISBN: 2889632199
Category :
Languages : en
Pages : 153

Get Book Here

Book Description
Global demand for mineral fertilizers is continuously increasing, while large amounts of organic wastes are being disposed without use as a resource, resulting in soil, water and air pollution. Current trends of intensification, expansion and agglomeration of livestock production result in a net import of nutrients that lead to a surplus in some production areas. Therefore, new processes and technologies to recover and re-use nutrients from both solid and liquid wastes are desirable to close the loop on the nutrient cycle in modern human society and address future scarcity of non-renewable nutrients and fossil-based fertilizers. This Research Topic aims to present scientific progress regarding processes and technologies that allow recovery and re-use of nutrients from wastes, the selective recovery of mineral nutrients (ammonia and phosphates), the production of new organic fertilizers, and evaluation of their relative agronomic efficiency. The articles within provide a stronger recognition of the importance of nutrient recovery and upcycling in the new horizons of the circular economy.

Energy and Nutrient Recovery from Organic Wastes Through Anaerobic Digestion and Digestate Treatment

Energy and Nutrient Recovery from Organic Wastes Through Anaerobic Digestion and Digestate Treatment PDF Author: Mianfeng Zhang
Publisher:
ISBN: 9780355149289
Category :
Languages : en
Pages :

Get Book Here

Book Description
Renewable energy with its benefits of reducing greenhouse gas emissions and substituting depleted fossil energy plays more and more important role nowadays. Anaerobic digestion, which converts biodegradable materials through a series of biochemical conversion processes, can contribute a significant portion of renewable energy. Meanwhile, as an alternative pathway for organic waste treatment process, anaerobic digestion can successfully achieve waste treatment and renewable energy production in well-controlled anaerobic digestion system. However, the effluent from anaerobic digesters usually contains ammonia and residual organic nitrogen, as well as other nutrients, salts and organic compounds that require proper treatment in order to reduce the environmental impact and recover values. Thus, digester effluent treatment is important for the development and deployment of anaerobic digestion technologies. In order to develop an efficient organic waste to renewable energy conversion process, a thorough study including feedstock characterization, pilot scale and large scale anaerobic digester facility feasibility test, effluent treatment process efficiency evaluation and life cycle assessment of large scale anaerobic digester facility was conducted. In feedstock characterization, eight types of organic wastes including tomato waste, tomato pomace, rice straw, commercial food waste, supermarket vegetable waste and egg liquid waste were selected as representations of various organic waste sources in California. All the samples were analyzed for their physical characteristics and chemical compositions including total solids (TS), volatile solids (VS) and nutrient contents and the biogas potentials of these selected organic wastes were investigated in batch anaerobic digestion test. As a result, all the selected waste streams were determined to have relatively good biogas potentials. Commercial food waste and supermarket vegetable waste had high biogas yield of 937 ml/g VS and 809 ml/g VS. On the other hand, rice straw, chicken manure and cardboard had relatively lower biogas yields of 565 ml/g VS, 447 ml/g VS and 396 ml/g VS, respectively. Although, biogas potentials varied based on the characteristics of the waste streams, all the selected waste were considered to be good feedstocks for anaerobic digestion due to their high organic content. Co-digestion of multiple organic waste can effectively adjust C/N ratio of the feedstocks and improve biogas production. Co-digestion of manure and food waste was studied in a pilot-scale high solids, two phase, thermophilic anaerobic digestion system. A pilot scale anaerobic digester was operated for five-month with mixed food wastes and dairy manure as feedstock. During the five-month operation, dairy manure had an average total solid content of 32% and average volatile solid content of 16%. Food waste had lower average solid content of 25% but higher average VS/TS ratio of 94%. The overall average biogas yield was 613 ml/g VS and average methane content was 62%. As a result of ammonia accumulation during the operation, ammonia concentration increased over the five months and reached up 4,172 mg/L after 10-week operation. High ammonia concentration may cause inhibition to microbial activity and reduce biogas production, thus proper treatment process would be required for long term operation. An integrated system consisting of biological treatment and membrane separation was investigated and developed to recover the nutrients from the effluent of anaerobic digesters. The system design includes a continuous aerobic process to reduce organic content and remove odor and then following two steps of membrane separation (microfiltration and reverse osmosis) for nitrogen recovery. Microfiltration could effectively remove chemical oxygen demand (COD), total suspended solids (TSS) and total solids (TS) with removal efficiency of 85%, 89% and 72%, respectively. Reverse osmosis (RO) could effectively recover nitrogen from the effluent with removal efficiency of 99%. The integrated system was able to successfully recover 73% of the ammonia nitrogen from the digester effluent into concentrate stream of RO, which only accounted for 16% of the initial volume. The UC Davis Renewable Energy Anaerobic Digester (READ) facility was evaluated for the feasibility and stability of the performance of a large scale anaerobic digester system. During one year start-up operation, READ facility was able to successfully process various organic waste streams and maintain stable functional conditions. A life cycle assessment (LCA) study was also conducted to evaluate the energy and environmental impact of READ facility. The annual Green House Gas (GHG) emissions of READ was estimated to be 98.2 metric tons CO2e/year for processing approximately 13,000 tons of organic waste per year. A carbon intensity (CI) value of 5.39 CO2e/MJ of the electricity fuel produced by READ was also determined as outcome of this LCA study. This CI value indicates that anaerobic digester systems can not only be an effective waste treatment process but also become a feasible approach to meet low carbon fuel standard (LCFS).

Phosphorus: Polluter and Resource of the Future

Phosphorus: Polluter and Resource of the Future PDF Author: Christian Schaum
Publisher: IWA Publishing
ISBN: 1780408358
Category : Science
Languages : en
Pages : 592

Get Book Here

Book Description
This comprehensive book provides an up-to-date and international approach that addresses the Motivations, Technologies and Assessment of the Elimination and Recovery of Phosphorus from Wastewater. This book is part of the Integrated Environmental Technology Series.

Pyrophosphates and Polyphosphates in Plants and Microorganisms

Pyrophosphates and Polyphosphates in Plants and Microorganisms PDF Author: Jose Roman Perez-Castineira
Publisher: Frontiers Media SA
ISBN: 288966810X
Category : Science
Languages : en
Pages : 157

Get Book Here

Book Description


Wastewater

Wastewater PDF Author: Pay Drechsel
Publisher: Springer
ISBN: 9401795452
Category : Technology & Engineering
Languages : en
Pages : 287

Get Book Here

Book Description
The books provides a timely analysis in support of a paradigm shift in the field of wastewater management, from ‘treatment for disposal’ to ‘treatment for reuse’ by offering a variety of value propositions for water, nutrient and energy recovery which can support cost savings, cost recovery, and profits, in a sector that traditionally relies on public funding. The book provides new insights into the economics of wastewater use, applicable to developed and developing countries striving to transform wastewater from an unpleasant liability to a valuable asset and recasting urbanization from a daunting challenge into a resource recovery opportunity. “It requires business thinking to transform septage and sewage into valuable products. A must read for water scholars, policy makers, practitioners, and entrepreneurs". Guy Hutton, Senior Economist, Water and Sanitation Program, Water Global Practice, World Bank “This book provides compelling evidence and real solutions for the new ‘resource from waste’ approach that is transforming sanitation, boosting livelihoods, and strengthening urban resilience”. Christopher Scott, Professor and Distinguished Scholar, University of Arizona “This book shows how innovative business thinking and partnerships around resource recovery and reuse fit well within an inclusive green economy and climate change adaptation and mitigation strategies”. Akiça Bahri, Coordinator of the African Water Facility, Tunisia, and award-winning researcher

A-B processes: Towards Energy Self-sufficient Municipal Wastewater Treatment

A-B processes: Towards Energy Self-sufficient Municipal Wastewater Treatment PDF Author: Yu Liu
Publisher: IWA Publishing
ISBN: 1789060079
Category : Science
Languages : en
Pages : 184

Get Book Here

Book Description
The principle of the conventional activated sludge (CAS) for municipal wastewater treatment is primarily based on biological oxidation by which organic matters are converted to biomass and carbon dioxide. After more than 100 years’ successful application, the CAS process is receiving increasing critiques on its high energy consumption and excessive sludge generation. Currently, almost all municipal wastewater treatment plants with the CAS as a core process are being operated in an energy-negative fashion. To tackle such challenging situations, there is a need to re-examine the present wastewater treatment philosophy by developing and adopting novel process configurations and emerging technologies. The solutions going forward should rely on the ways to improve direct energy recovery from wastewater, while minimizing in-plant energy consumption. This book begins with a critical overview of the energy situation and challenges in current municipal wastewater treatment plants, showing the necessity of the paradigm shift from removal to recovery in terms of energy and resource. As such, the concept of A-B process is discussed in detail in the book. It appears that various A-B process configurations are able to provide possible engineering solutions in which A-stage is primarily designed for COD capture with the aim for direct anaerobic treatment without producing excessive biosludge, while B-stage is designated for nitrogen removal. Making the wastewater treatment energy self-sustainable is obviously of global significance and eventually may become a game changer for the global market of the municipal wastewater reclamation technology. The principal audiences include practitioners, professionals, university researchers, undergraduate and postgraduate students who are interested and specialized in municipal wastewater treatment and process design, environmental engineering, and environmental biotechnology.

Faecal Sludge Management

Faecal Sludge Management PDF Author: Linda Strande
Publisher: IWA Publishing
ISBN: 1780404735
Category : Technology & Engineering
Languages : en
Pages : 428

Get Book Here

Book Description
It is estimated that literally billions of residents in urban and peri-urban areas of Africa, Asia, and Latin America are served by onsite sanitation systems (e.g. various types of latrines and septic tanks). Until recently, the management of faecal sludge from these onsite systems has been grossly neglected, partially as a result of them being considered temporary solutions until sewer-based systems could be implemented. However, the perception of onsite or decentralized sanitation technologies for urban areas is gradually changing, and is increasingly being considered as long-term, sustainable options in urban areas, especially in low- and middle-income countries that lack sewer infrastructures. This is the first book dedicated to faecal sludge management. It compiles the current state of knowledge of the rapidly evolving field of faecal sludge management, and presents an integrated approach that includes technology, management, and planning based on Sandecs 20 years of experience in the field. Faecal Sludge Management: Systems Approach for Implementation and Operation addresses the organization of the entire faecal sludge management service chain, from the collection and transport of sludge, and the current state of knowledge of treatment options, to the final end use or disposal of treated sludge. The book also presents important factors to consider when evaluating and upscaling new treatment technology options. The book is designed for undergraduate and graduate students, and engineers and practitioners in the field who have some basic knowledge of environmental and/or wastewater engineering.

Sewage Treatment Plants

Sewage Treatment Plants PDF Author: Katerina Stamatelatou
Publisher: IWA Publishing
ISBN: 1780405014
Category : Science
Languages : en
Pages : 376

Get Book Here

Book Description
Sewage Treatment Plants: Economic Evaluation of Innovative Technologies for Energy Efficiency aims to show how cost saving can be achieved in sewage treatment plants through implementation of novel, energy efficient technologies or modification of the conventional, energy demanding treatment facilities towards the concept of energy streamlining. The book brings together knowledge from Engineering, Economics, Utility Management and Practice and helps to provide a better understanding of the real economic value with methodologies and practices about innovative energy technologies and policies in sewage treatment plants.