Author: R. E. Daniell
Publisher:
ISBN:
Category : Ionospheric electron density
Languages : en
Pages : 70
Book Description
The possible use of satellite ultraviolet measurements to deduce the ionospheric electron density profile (EDP) on a global basis is discussed. A system concept is considered and analyzed which (a) develops and installs a UV sensor on the DMSP satellite and develops an associated automatic data processing (software) system, (b) utilities optical data together with DMSP electron density and temperature data to deduce the near real-time EDP near the satellite orbital plane, and (c) transmits this EDP data to be used together with ground-based ionosonde data and GPS total electron content data to specify the global EDP for systems users. The ionosonde and total electron content data would increase the EDP data base generated by the UV data and refine the UV based EDP where coincident data existed. This report considers (a) the daytime low to midlatitude ionosphere from 90 to 1000 km, (b) the nighttime midlatitude from about 250 km to 1000km, and (c) the auroral E layer from 90 to about 200 km for undisturbed conditions. The spatial resolution for the daytime and nighttime EDP is at least one vertical profile for each square 500 km on a side and for the auroral E layer at least one vertical profile for each square 50km on a side. Other ionospheric regions were not considered because of frequent occurrence of irregularities or highly variable transport conditions.
Determination of Ionospheric Electron Density Profiles from Satellite UV Emission Measurements, FY 84
Author: R. E. Daniell
Publisher:
ISBN:
Category : Ionospheric electron density
Languages : en
Pages : 70
Book Description
The possible use of satellite ultraviolet measurements to deduce the ionospheric electron density profile (EDP) on a global basis is discussed. A system concept is considered and analyzed which (a) develops and installs a UV sensor on the DMSP satellite and develops an associated automatic data processing (software) system, (b) utilities optical data together with DMSP electron density and temperature data to deduce the near real-time EDP near the satellite orbital plane, and (c) transmits this EDP data to be used together with ground-based ionosonde data and GPS total electron content data to specify the global EDP for systems users. The ionosonde and total electron content data would increase the EDP data base generated by the UV data and refine the UV based EDP where coincident data existed. This report considers (a) the daytime low to midlatitude ionosphere from 90 to 1000 km, (b) the nighttime midlatitude from about 250 km to 1000km, and (c) the auroral E layer from 90 to about 200 km for undisturbed conditions. The spatial resolution for the daytime and nighttime EDP is at least one vertical profile for each square 500 km on a side and for the auroral E layer at least one vertical profile for each square 50km on a side. Other ionospheric regions were not considered because of frequent occurrence of irregularities or highly variable transport conditions.
Publisher:
ISBN:
Category : Ionospheric electron density
Languages : en
Pages : 70
Book Description
The possible use of satellite ultraviolet measurements to deduce the ionospheric electron density profile (EDP) on a global basis is discussed. A system concept is considered and analyzed which (a) develops and installs a UV sensor on the DMSP satellite and develops an associated automatic data processing (software) system, (b) utilities optical data together with DMSP electron density and temperature data to deduce the near real-time EDP near the satellite orbital plane, and (c) transmits this EDP data to be used together with ground-based ionosonde data and GPS total electron content data to specify the global EDP for systems users. The ionosonde and total electron content data would increase the EDP data base generated by the UV data and refine the UV based EDP where coincident data existed. This report considers (a) the daytime low to midlatitude ionosphere from 90 to 1000 km, (b) the nighttime midlatitude from about 250 km to 1000km, and (c) the auroral E layer from 90 to about 200 km for undisturbed conditions. The spatial resolution for the daytime and nighttime EDP is at least one vertical profile for each square 500 km on a side and for the auroral E layer at least one vertical profile for each square 50km on a side. Other ionospheric regions were not considered because of frequent occurrence of irregularities or highly variable transport conditions.
Determination of Ionospheric Electron Density Profiles from Satellite UV Emission Measurements
Author: D. J. Strickland
Publisher:
ISBN:
Category : Ionospheric electron density
Languages : en
Pages : 74
Book Description
The possible use of satellite ultraviolet measurements to deduce the ionospheric electron density profile (EDP) on a global basis is discussed. A system concept is considered and analyzed which (a) develops and installs a UV sensor on the DMSP satellite and develops an associated automatic data processing (software) system, (b) utilities optical data together with DMSP electron density and temperature data to deduce the near real-time EDP near the satellite orbital plane, and (c) transmits this EDP data to be used together with ground-based ionosonde data and GPS total electron content data to specify the global EDP for systems users. The ionosonde and total electron content data would increase the EDP data base generated by the UV data and refine the UV based EDP where coincident data existed. This report considers (a) the daytime low to midlatitude ionosphere from 90 to 1000 km, (b) the nighttime midlatitude from about 250 km to 1000km, and (c) the auroral E layer from 90 to about 200 km for undisturbed conditions. The spatial resolution for the daytime and nighttime EDP is at least one vertical profile for each square 500 km on a side and for the auroral E layer at least one vertical profile for each square 50km on a side. Other ionospheric regions were not considered because of frequent occurrence of irregularities or highly variable transport conditions.
Publisher:
ISBN:
Category : Ionospheric electron density
Languages : en
Pages : 74
Book Description
The possible use of satellite ultraviolet measurements to deduce the ionospheric electron density profile (EDP) on a global basis is discussed. A system concept is considered and analyzed which (a) develops and installs a UV sensor on the DMSP satellite and develops an associated automatic data processing (software) system, (b) utilities optical data together with DMSP electron density and temperature data to deduce the near real-time EDP near the satellite orbital plane, and (c) transmits this EDP data to be used together with ground-based ionosonde data and GPS total electron content data to specify the global EDP for systems users. The ionosonde and total electron content data would increase the EDP data base generated by the UV data and refine the UV based EDP where coincident data existed. This report considers (a) the daytime low to midlatitude ionosphere from 90 to 1000 km, (b) the nighttime midlatitude from about 250 km to 1000km, and (c) the auroral E layer from 90 to about 200 km for undisturbed conditions. The spatial resolution for the daytime and nighttime EDP is at least one vertical profile for each square 500 km on a side and for the auroral E layer at least one vertical profile for each square 50km on a side. Other ionospheric regions were not considered because of frequent occurrence of irregularities or highly variable transport conditions.
Atmospheric Ultraviolet Remote Sensing
Author: Robert E. Huffman
Publisher: Academic Press
ISBN: 0080918808
Category : Science
Languages : en
Pages : 331
Book Description
This book is an introduction to the use of the ultraviolet for remote sensing of the Earth's atmosphere. It covers the Earth's UV radiative environment, experimental techniques, and current applications. it is my intention to provide the information needed to "make a first approximation" concerning the use of the ultraviolet and to provide access through the literature for a more thorough study.* Contains recent UV applications not previously available in book form such as ozone, auroral images, and ionospheric sensing* Features broad coverage of fundamentals of atmospheric geophysics with values for fluxes, cross-sections, and radiances* Covers techniques that illustrate principles of measurements with typical values* Contains numerous references to original literature
Publisher: Academic Press
ISBN: 0080918808
Category : Science
Languages : en
Pages : 331
Book Description
This book is an introduction to the use of the ultraviolet for remote sensing of the Earth's atmosphere. It covers the Earth's UV radiative environment, experimental techniques, and current applications. it is my intention to provide the information needed to "make a first approximation" concerning the use of the ultraviolet and to provide access through the literature for a more thorough study.* Contains recent UV applications not previously available in book form such as ozone, auroral images, and ionospheric sensing* Features broad coverage of fundamentals of atmospheric geophysics with values for fluxes, cross-sections, and radiances* Covers techniques that illustrate principles of measurements with typical values* Contains numerous references to original literature
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1162
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1162
Book Description
Monthly Catalog of United States Government Publications
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 578
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 578
Book Description
The Effect of the Ionosphere on Communication, Navigation, and Surveillance Systems
Author: John M. Goodman
Publisher:
ISBN:
Category : Ionosphere
Languages : en
Pages : 716
Book Description
Publisher:
ISBN:
Category : Ionosphere
Languages : en
Pages : 716
Book Description
Energy Research Abstracts
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 888
Book Description
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 888
Book Description
Meteorological and Geoastrophysical Abstracts
Author:
Publisher:
ISBN:
Category : Astrophysics
Languages : en
Pages : 492
Book Description
Publisher:
ISBN:
Category : Astrophysics
Languages : en
Pages : 492
Book Description
Environmental Research Papers
Author:
Publisher:
ISBN:
Category : Environmental geology
Languages : en
Pages : 30
Book Description
Publisher:
ISBN:
Category : Environmental geology
Languages : en
Pages : 30
Book Description
Role of Chemical Effects in Daytime High Latitude Trough Formation
Author: Christopher Sherman
Publisher:
ISBN:
Category : Atmospheric chemistry
Languages : en
Pages : 22
Book Description
The role of enhanced chemical reaction rates in the formation of the daytime F-region trough is examined. A simple convection model is used to estimate the maximum likely elevation of effective temperature for the ion reaction O+ + N2 yields NO(+)+ N. Under extreme conditions the effective temperature can reach 4000 k resulting in a 30-fold increase in the reaction rate. However, the resulting reduction in F-region electron density is only a factor of 4. Under more usual conditions, the reduction is less than a factor of 2. The actual density reduction factor in the daytime trough is observed to vary between 3 and 10 under normal conditions. Therefore, we conclude that under most circumstances, convection-enhanced chemistry contributes very little to the formation of the daytime trough.
Publisher:
ISBN:
Category : Atmospheric chemistry
Languages : en
Pages : 22
Book Description
The role of enhanced chemical reaction rates in the formation of the daytime F-region trough is examined. A simple convection model is used to estimate the maximum likely elevation of effective temperature for the ion reaction O+ + N2 yields NO(+)+ N. Under extreme conditions the effective temperature can reach 4000 k resulting in a 30-fold increase in the reaction rate. However, the resulting reduction in F-region electron density is only a factor of 4. Under more usual conditions, the reduction is less than a factor of 2. The actual density reduction factor in the daytime trough is observed to vary between 3 and 10 under normal conditions. Therefore, we conclude that under most circumstances, convection-enhanced chemistry contributes very little to the formation of the daytime trough.