Author: Jun Chen
Publisher: CRC Press
ISBN: 1000220168
Category : Business & Economics
Languages : en
Pages : 165
Book Description
Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithms It will be of great interest to researchers in computational finance, machine learning and data science. About the Authors Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019. Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.
Detecting Regime Change in Computational Finance
Author: Jun Chen
Publisher: CRC Press
ISBN: 1000220168
Category : Business & Economics
Languages : en
Pages : 165
Book Description
Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithms It will be of great interest to researchers in computational finance, machine learning and data science. About the Authors Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019. Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.
Publisher: CRC Press
ISBN: 1000220168
Category : Business & Economics
Languages : en
Pages : 165
Book Description
Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithms It will be of great interest to researchers in computational finance, machine learning and data science. About the Authors Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019. Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.
Genetic Algorithms and Genetic Programming in Computational Finance
Author: Shu-Heng Chen
Publisher: Springer Science & Business Media
ISBN: 1461508355
Category : Business & Economics
Languages : en
Pages : 491
Book Description
After a decade of development, genetic algorithms and genetic programming have become a widely accepted toolkit for computational finance. Genetic Algorithms and Genetic Programming in Computational Finance is a pioneering volume devoted entirely to a systematic and comprehensive review of this subject. Chapters cover various areas of computational finance, including financial forecasting, trading strategies development, cash flow management, option pricing, portfolio management, volatility modeling, arbitraging, and agent-based simulations of artificial stock markets. Two tutorial chapters are also included to help readers quickly grasp the essence of these tools. Finally, a menu-driven software program, Simple GP, accompanies the volume, which will enable readers without a strong programming background to gain hands-on experience in dealing with much of the technical material introduced in this work.
Publisher: Springer Science & Business Media
ISBN: 1461508355
Category : Business & Economics
Languages : en
Pages : 491
Book Description
After a decade of development, genetic algorithms and genetic programming have become a widely accepted toolkit for computational finance. Genetic Algorithms and Genetic Programming in Computational Finance is a pioneering volume devoted entirely to a systematic and comprehensive review of this subject. Chapters cover various areas of computational finance, including financial forecasting, trading strategies development, cash flow management, option pricing, portfolio management, volatility modeling, arbitraging, and agent-based simulations of artificial stock markets. Two tutorial chapters are also included to help readers quickly grasp the essence of these tools. Finally, a menu-driven software program, Simple GP, accompanies the volume, which will enable readers without a strong programming background to gain hands-on experience in dealing with much of the technical material introduced in this work.
AI for Finance
Author: Edward P. K. Tsang
Publisher: CRC Press
ISBN: 1000878570
Category : Computers
Languages : en
Pages : 109
Book Description
Finance students and practitioners may ask: can machines learn everything? Could AI help me? Computing students or practitioners may ask: which of my skills could contribute to finance? Where in finance should I pay attention? This book aims to answer these questions. No prior knowledge is expected in AI or finance. Including original research, the book explains the impact of ignoring computation in classical economics; examines the relationship between computing and finance and points out potential misunderstandings between economists and computer scientists; and introduces Directional Change and explains how this can be used. To finance students and practitioners, this book will explain the promise of AI, as well as its limitations. It will cover knowledge representation, modelling, simulation and machine learning, explaining the principles of how they work. To computing students and practitioners, this book will introduce the financial applications in which AI has made an impact. This includes algorithmic trading, forecasting, risk analysis portfolio optimization and other less well-known areas in finance. Trading depth for readability, AI for Finance will help readers decide whether to invest more time into the subject.
Publisher: CRC Press
ISBN: 1000878570
Category : Computers
Languages : en
Pages : 109
Book Description
Finance students and practitioners may ask: can machines learn everything? Could AI help me? Computing students or practitioners may ask: which of my skills could contribute to finance? Where in finance should I pay attention? This book aims to answer these questions. No prior knowledge is expected in AI or finance. Including original research, the book explains the impact of ignoring computation in classical economics; examines the relationship between computing and finance and points out potential misunderstandings between economists and computer scientists; and introduces Directional Change and explains how this can be used. To finance students and practitioners, this book will explain the promise of AI, as well as its limitations. It will cover knowledge representation, modelling, simulation and machine learning, explaining the principles of how they work. To computing students and practitioners, this book will introduce the financial applications in which AI has made an impact. This includes algorithmic trading, forecasting, risk analysis portfolio optimization and other less well-known areas in finance. Trading depth for readability, AI for Finance will help readers decide whether to invest more time into the subject.
Generative AI for Web Engineering Models
Author: Shah, Imdad Ali
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 622
Book Description
Web engineering faces a pressing challenge in keeping pace with the rapidly evolving digital landscape. Developing, designing, testing, and maintaining web-based systems and applications require innovative approaches to meet the growing demands of users and businesses. Generative Artificial Intelligence (AI) emerges as a transformative solution, offering advanced capabilities to enhance web engineering models and methodologies. This book presents a timely exploration of how Generative AI can revolutionize the web engineering discipline, providing insights into future challenges and societal impacts. Generative AI for Web Engineering Models offers a comprehensive examination of integrating AI-driven generative approaches into web engineering practices. It delves into methodologies, models, and the transformative impact of Generative AI on web-based systems and applications. By addressing topics such as web browser technologies, website scalability, security, and the integration of Machine Learning, this book provides a roadmap for researchers, scientists, postgraduate students, and AI enthusiasts interested in the intersection of AI and web engineering.
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 622
Book Description
Web engineering faces a pressing challenge in keeping pace with the rapidly evolving digital landscape. Developing, designing, testing, and maintaining web-based systems and applications require innovative approaches to meet the growing demands of users and businesses. Generative Artificial Intelligence (AI) emerges as a transformative solution, offering advanced capabilities to enhance web engineering models and methodologies. This book presents a timely exploration of how Generative AI can revolutionize the web engineering discipline, providing insights into future challenges and societal impacts. Generative AI for Web Engineering Models offers a comprehensive examination of integrating AI-driven generative approaches into web engineering practices. It delves into methodologies, models, and the transformative impact of Generative AI on web-based systems and applications. By addressing topics such as web browser technologies, website scalability, security, and the integration of Machine Learning, this book provides a roadmap for researchers, scientists, postgraduate students, and AI enthusiasts interested in the intersection of AI and web engineering.
Simulation in Computational Finance and Economics: Tools and Emerging Applications
Author: Alexandrova-Kabadjova, Biliana
Publisher: IGI Global
ISBN: 1466620129
Category : Business & Economics
Languages : en
Pages : 459
Book Description
Simulation has become a tool difficult to substitute in many scientific areas like manufacturing, medicine, telecommunications, games, etc. Finance is one of such areas where simulation is a commonly used tool; for example, we can find Monte Carlo simulation in many financial applications like market risk analysis, portfolio optimization, credit risk related applications, etc. Simulation in Computational Finance and Economics: Tools and Emerging Applications presents a thorough collection of works, covering several rich and highly productive areas of research including Risk Management, Agent-Based Simulation, and Payment Methods and Systems, topics that have found new motivations after the strong recession experienced in the last few years. Despite the fact that simulation is widely accepted as a prominent tool, dealing with a simulation-based project requires specific management abilities of the researchers. Economic researchers will find an excellent reference to introduce them to the computational simulation models. The works presented in this book can be used as an inspiration for economic researchers interested in creating their own computational models in their respective fields.
Publisher: IGI Global
ISBN: 1466620129
Category : Business & Economics
Languages : en
Pages : 459
Book Description
Simulation has become a tool difficult to substitute in many scientific areas like manufacturing, medicine, telecommunications, games, etc. Finance is one of such areas where simulation is a commonly used tool; for example, we can find Monte Carlo simulation in many financial applications like market risk analysis, portfolio optimization, credit risk related applications, etc. Simulation in Computational Finance and Economics: Tools and Emerging Applications presents a thorough collection of works, covering several rich and highly productive areas of research including Risk Management, Agent-Based Simulation, and Payment Methods and Systems, topics that have found new motivations after the strong recession experienced in the last few years. Despite the fact that simulation is widely accepted as a prominent tool, dealing with a simulation-based project requires specific management abilities of the researchers. Economic researchers will find an excellent reference to introduce them to the computational simulation models. The works presented in this book can be used as an inspiration for economic researchers interested in creating their own computational models in their respective fields.
Cybernetic Analysis for Stocks and Futures
Author: John F. Ehlers
Publisher: John Wiley & Sons
ISBN: 1118045726
Category : Business & Economics
Languages : en
Pages : 274
Book Description
Cutting-edge insight from the leader in trading technology In Cybernetic Analysis for Stocks and Futures, noted technical analyst John Ehlers continues to enlighten readers on the art of predicting the market based on tested systems. With application of his engineering expertise, Ehlers explains the latest, most advanced techniques that help traders predict stock and futures markets with surgical precision. Unique new indicators and automatic trading systems are described in text as well as Easy Language and EFS code. The approaches are universal and robust enough to be applied to a full range of market conditions. John F. Ehlers (Santa Barbara, CA) is President of MESA Software (www.mesasoftware.com) and has also written Rocket Science for Traders (0-471-40567-1) as well as numerous articles for Futures and Technical Analysis of Stocks & Commodities magazines.
Publisher: John Wiley & Sons
ISBN: 1118045726
Category : Business & Economics
Languages : en
Pages : 274
Book Description
Cutting-edge insight from the leader in trading technology In Cybernetic Analysis for Stocks and Futures, noted technical analyst John Ehlers continues to enlighten readers on the art of predicting the market based on tested systems. With application of his engineering expertise, Ehlers explains the latest, most advanced techniques that help traders predict stock and futures markets with surgical precision. Unique new indicators and automatic trading systems are described in text as well as Easy Language and EFS code. The approaches are universal and robust enough to be applied to a full range of market conditions. John F. Ehlers (Santa Barbara, CA) is President of MESA Software (www.mesasoftware.com) and has also written Rocket Science for Traders (0-471-40567-1) as well as numerous articles for Futures and Technical Analysis of Stocks & Commodities magazines.
Mathematical Modeling And Computation In Finance: With Exercises And Python And Matlab Computer Codes
Author: Cornelis W Oosterlee
Publisher: World Scientific
ISBN: 1786347962
Category : Business & Economics
Languages : en
Pages : 1310
Book Description
This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry.
Publisher: World Scientific
ISBN: 1786347962
Category : Business & Economics
Languages : en
Pages : 1310
Book Description
This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry.
Applications of Computational Intelligence in Data-Driven Trading
Author: Cris Doloc
Publisher: John Wiley & Sons
ISBN: 1119550513
Category : Business & Economics
Languages : en
Pages : 319
Book Description
“Life on earth is filled with many mysteries, but perhaps the most challenging of these is the nature of Intelligence.” – Prof. Terrence J. Sejnowski, Computational Neurobiologist The main objective of this book is to create awareness about both the promises and the formidable challenges that the era of Data-Driven Decision-Making and Machine Learning are confronted with, and especially about how these new developments may influence the future of the financial industry. The subject of Financial Machine Learning has attracted a lot of interest recently, specifically because it represents one of the most challenging problem spaces for the applicability of Machine Learning. The author has used a novel approach to introduce the reader to this topic: The first half of the book is a readable and coherent introduction to two modern topics that are not generally considered together: the data-driven paradigm and Computational Intelligence. The second half of the book illustrates a set of Case Studies that are contemporarily relevant to quantitative trading practitioners who are dealing with problems such as trade execution optimization, price dynamics forecast, portfolio management, market making, derivatives valuation, risk, and compliance. The main purpose of this book is pedagogical in nature, and it is specifically aimed at defining an adequate level of engineering and scientific clarity when it comes to the usage of the term “Artificial Intelligence,” especially as it relates to the financial industry. The message conveyed by this book is one of confidence in the possibilities offered by this new era of Data-Intensive Computation. This message is not grounded on the current hype surrounding the latest technologies, but on a deep analysis of their effectiveness and also on the author’s two decades of professional experience as a technologist, quant and academic.
Publisher: John Wiley & Sons
ISBN: 1119550513
Category : Business & Economics
Languages : en
Pages : 319
Book Description
“Life on earth is filled with many mysteries, but perhaps the most challenging of these is the nature of Intelligence.” – Prof. Terrence J. Sejnowski, Computational Neurobiologist The main objective of this book is to create awareness about both the promises and the formidable challenges that the era of Data-Driven Decision-Making and Machine Learning are confronted with, and especially about how these new developments may influence the future of the financial industry. The subject of Financial Machine Learning has attracted a lot of interest recently, specifically because it represents one of the most challenging problem spaces for the applicability of Machine Learning. The author has used a novel approach to introduce the reader to this topic: The first half of the book is a readable and coherent introduction to two modern topics that are not generally considered together: the data-driven paradigm and Computational Intelligence. The second half of the book illustrates a set of Case Studies that are contemporarily relevant to quantitative trading practitioners who are dealing with problems such as trade execution optimization, price dynamics forecast, portfolio management, market making, derivatives valuation, risk, and compliance. The main purpose of this book is pedagogical in nature, and it is specifically aimed at defining an adequate level of engineering and scientific clarity when it comes to the usage of the term “Artificial Intelligence,” especially as it relates to the financial industry. The message conveyed by this book is one of confidence in the possibilities offered by this new era of Data-Intensive Computation. This message is not grounded on the current hype surrounding the latest technologies, but on a deep analysis of their effectiveness and also on the author’s two decades of professional experience as a technologist, quant and academic.
Algorithmic Trading
Author: Ernie Chan
Publisher: John Wiley & Sons
ISBN: 1118460146
Category : Business & Economics
Languages : en
Pages : 230
Book Description
Praise for Algorithmic TRADING “Algorithmic Trading is an insightful book on quantitative trading written by a seasoned practitioner. What sets this book apart from many others in the space is the emphasis on real examples as opposed to just theory. Concepts are not only described, they are brought to life with actual trading strategies, which give the reader insight into how and why each strategy was developed, how it was implemented, and even how it was coded. This book is a valuable resource for anyone looking to create their own systematic trading strategies and those involved in manager selection, where the knowledge contained in this book will lead to a more informed and nuanced conversation with managers.” —DAREN SMITH, CFA, CAIA, FSA, Managing Director, Manager Selection & Portfolio Construction, University of Toronto Asset Management “Using an excellent selection of mean reversion and momentum strategies, Ernie explains the rationale behind each one, shows how to test it, how to improve it, and discusses implementation issues. His book is a careful, detailed exposition of the scientific method applied to strategy development. For serious retail traders, I know of no other book that provides this range of examples and level of detail. His discussions of how regime changes affect strategies, and of risk management, are invaluable bonuses.” —ROGER HUNTER, Mathematician and Algorithmic Trader
Publisher: John Wiley & Sons
ISBN: 1118460146
Category : Business & Economics
Languages : en
Pages : 230
Book Description
Praise for Algorithmic TRADING “Algorithmic Trading is an insightful book on quantitative trading written by a seasoned practitioner. What sets this book apart from many others in the space is the emphasis on real examples as opposed to just theory. Concepts are not only described, they are brought to life with actual trading strategies, which give the reader insight into how and why each strategy was developed, how it was implemented, and even how it was coded. This book is a valuable resource for anyone looking to create their own systematic trading strategies and those involved in manager selection, where the knowledge contained in this book will lead to a more informed and nuanced conversation with managers.” —DAREN SMITH, CFA, CAIA, FSA, Managing Director, Manager Selection & Portfolio Construction, University of Toronto Asset Management “Using an excellent selection of mean reversion and momentum strategies, Ernie explains the rationale behind each one, shows how to test it, how to improve it, and discusses implementation issues. His book is a careful, detailed exposition of the scientific method applied to strategy development. For serious retail traders, I know of no other book that provides this range of examples and level of detail. His discussions of how regime changes affect strategies, and of risk management, are invaluable bonuses.” —ROGER HUNTER, Mathematician and Algorithmic Trader
Advances in Financial Machine Learning
Author: Marcos Lopez de Prado
Publisher: John Wiley & Sons
ISBN: 1119482119
Category : Business & Economics
Languages : en
Pages : 395
Book Description
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Publisher: John Wiley & Sons
ISBN: 1119482119
Category : Business & Economics
Languages : en
Pages : 395
Book Description
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.