Author: Gareth A. Jones
Publisher: Springer
ISBN: 3319247115
Category : Mathematics
Languages : en
Pages : 264
Book Description
This volume provides an introduction to dessins d'enfants and embeddings of bipartite graphs in compact Riemann surfaces. The first part of the book presents basic material, guiding the reader through the current field of research. A key point of the second part is the interplay between the automorphism groups of dessins and their Riemann surfaces, and the action of the absolute Galois group on dessins and their algebraic curves. It concludes by showing the links between the theory of dessins and other areas of arithmetic and geometry, such as the abc conjecture, complex multiplication and Beauville surfaces. Dessins d'Enfants on Riemann Surfaces will appeal to graduate students and all mathematicians interested in maps, hypermaps, Riemann surfaces, geometric group actions, and arithmetic.
Dessins d'Enfants on Riemann Surfaces
Author: Gareth A. Jones
Publisher: Springer
ISBN: 3319247115
Category : Mathematics
Languages : en
Pages : 264
Book Description
This volume provides an introduction to dessins d'enfants and embeddings of bipartite graphs in compact Riemann surfaces. The first part of the book presents basic material, guiding the reader through the current field of research. A key point of the second part is the interplay between the automorphism groups of dessins and their Riemann surfaces, and the action of the absolute Galois group on dessins and their algebraic curves. It concludes by showing the links between the theory of dessins and other areas of arithmetic and geometry, such as the abc conjecture, complex multiplication and Beauville surfaces. Dessins d'Enfants on Riemann Surfaces will appeal to graduate students and all mathematicians interested in maps, hypermaps, Riemann surfaces, geometric group actions, and arithmetic.
Publisher: Springer
ISBN: 3319247115
Category : Mathematics
Languages : en
Pages : 264
Book Description
This volume provides an introduction to dessins d'enfants and embeddings of bipartite graphs in compact Riemann surfaces. The first part of the book presents basic material, guiding the reader through the current field of research. A key point of the second part is the interplay between the automorphism groups of dessins and their Riemann surfaces, and the action of the absolute Galois group on dessins and their algebraic curves. It concludes by showing the links between the theory of dessins and other areas of arithmetic and geometry, such as the abc conjecture, complex multiplication and Beauville surfaces. Dessins d'Enfants on Riemann Surfaces will appeal to graduate students and all mathematicians interested in maps, hypermaps, Riemann surfaces, geometric group actions, and arithmetic.
The Grothendieck Theory of Dessins D'Enfants
Author: Leila Schneps
Publisher: Cambridge University Press
ISBN: 9780521478212
Category : Mathematics
Languages : en
Pages : 384
Book Description
Dessins d'Enfants are combinatorial objects, namely drawings with vertices and edges on topological surfaces. Their interest lies in their relation with the set of algebraic curves defined over the closure of the rationals, and the corresponding action of the absolute Galois group on them. The study of this group via such realted combinatorial methods as its action on the Dessins and on certain fundamental groups of moduli spaces was initiated by Alexander Grothendieck in his unpublished Esquisse d'un Programme, and developed by many of the mathematicians who have contributed to this volume. The various articles here unite all of the basics of the subject as well as the most recent advances. Researchers in number theory, algebraic geometry or related areas of group theory will find much of interest in this book.
Publisher: Cambridge University Press
ISBN: 9780521478212
Category : Mathematics
Languages : en
Pages : 384
Book Description
Dessins d'Enfants are combinatorial objects, namely drawings with vertices and edges on topological surfaces. Their interest lies in their relation with the set of algebraic curves defined over the closure of the rationals, and the corresponding action of the absolute Galois group on them. The study of this group via such realted combinatorial methods as its action on the Dessins and on certain fundamental groups of moduli spaces was initiated by Alexander Grothendieck in his unpublished Esquisse d'un Programme, and developed by many of the mathematicians who have contributed to this volume. The various articles here unite all of the basics of the subject as well as the most recent advances. Researchers in number theory, algebraic geometry or related areas of group theory will find much of interest in this book.
Introduction to Compact Riemann Surfaces and Dessins D'Enfants
Author: Ernesto Girondo
Publisher: Cambridge University Press
ISBN: 0521519632
Category : Mathematics
Languages : en
Pages : 311
Book Description
An elementary account of the theory of compact Riemann surfaces and an introduction to the Belyi-Grothendieck theory of dessins d'enfants.
Publisher: Cambridge University Press
ISBN: 0521519632
Category : Mathematics
Languages : en
Pages : 311
Book Description
An elementary account of the theory of compact Riemann surfaces and an introduction to the Belyi-Grothendieck theory of dessins d'enfants.
Graphs on Surfaces and Their Applications
Author: Sergei K. Lando
Publisher: Springer Science & Business Media
ISBN: 3540383611
Category : Mathematics
Languages : en
Pages : 463
Book Description
Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.
Publisher: Springer Science & Business Media
ISBN: 3540383611
Category : Mathematics
Languages : en
Pages : 463
Book Description
Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.
Automorphisms of Riemann Surfaces, Subgroups of Mapping Class Groups and Related Topics
Author: Aaron Wootton
Publisher: American Mathematical Society
ISBN: 1470460254
Category : Mathematics
Languages : en
Pages : 366
Book Description
Automorphism groups of Riemann surfaces have been widely studied for almost 150 years. This area has persisted in part because it has close ties to many other topics of interest such as number theory, graph theory, mapping class groups, and geometric and computational group theory. In recent years there has been a major revival in this area due in part to great advances in computer algebra systems and progress in finite group theory. This volume provides a concise but thorough introduction for newcomers to the area while at the same time highlighting new developments for established researchers. The volume starts with two expository articles. The first of these articles gives a historical perspective of the field with an emphasis on highly symmetric surfaces, such as Hurwitz surfaces. The second expository article focuses on the future of the field, outlining some of the more popular topics in recent years and providing 78 open research problems across all topics. The remaining articles showcase new developments in the area and have specifically been chosen to cover a variety of topics to illustrate the range of diversity within the field.
Publisher: American Mathematical Society
ISBN: 1470460254
Category : Mathematics
Languages : en
Pages : 366
Book Description
Automorphism groups of Riemann surfaces have been widely studied for almost 150 years. This area has persisted in part because it has close ties to many other topics of interest such as number theory, graph theory, mapping class groups, and geometric and computational group theory. In recent years there has been a major revival in this area due in part to great advances in computer algebra systems and progress in finite group theory. This volume provides a concise but thorough introduction for newcomers to the area while at the same time highlighting new developments for established researchers. The volume starts with two expository articles. The first of these articles gives a historical perspective of the field with an emphasis on highly symmetric surfaces, such as Hurwitz surfaces. The second expository article focuses on the future of the field, outlining some of the more popular topics in recent years and providing 78 open research problems across all topics. The remaining articles showcase new developments in the area and have specifically been chosen to cover a variety of topics to illustrate the range of diversity within the field.
Galois Covers, Grothendieck-Teichmüller Theory and Dessins d'Enfants
Author: Frank Neumann
Publisher: Springer
ISBN: 9783030517977
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on 'Galois Covers, Grothendieck-Teichmüller Theory and Dessinsd'Enfants', which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike.
Publisher: Springer
ISBN: 9783030517977
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on 'Galois Covers, Grothendieck-Teichmüller Theory and Dessinsd'Enfants', which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike.
Research Directions in Number Theory
Author: Jennifer S. Balakrishnan
Publisher: Springer
ISBN: 3030194787
Category : Mathematics
Languages : en
Pages : 208
Book Description
These proceedings collect several number theory articles, most of which were written in connection to the workshop WIN4: Women in Numbers, held in August 2017, at the Banff International Research Station (BIRS) in Banff, Alberta, Canada. It collects papers disseminating research outcomes from collaborations initiated during the workshop as well as other original research contributions involving participants of the WIN workshops. The workshop and this volume are part of the WIN network, aimed at highlighting the research of women and gender minorities in number theory as well as increasing their participation and boosting their potential collaborations in number theory and related fields.
Publisher: Springer
ISBN: 3030194787
Category : Mathematics
Languages : en
Pages : 208
Book Description
These proceedings collect several number theory articles, most of which were written in connection to the workshop WIN4: Women in Numbers, held in August 2017, at the Banff International Research Station (BIRS) in Banff, Alberta, Canada. It collects papers disseminating research outcomes from collaborations initiated during the workshop as well as other original research contributions involving participants of the WIN workshops. The workshop and this volume are part of the WIN network, aimed at highlighting the research of women and gender minorities in number theory as well as increasing their participation and boosting their potential collaborations in number theory and related fields.
Galois Covers, Grothendieck-Teichmüller Theory and Dessins d'Enfants
Author: Frank Neumann
Publisher: Springer Nature
ISBN: 3030517950
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on 'Galois Covers, Grothendieck-Teichmüller Theory and Dessinsd'Enfants', which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike.
Publisher: Springer Nature
ISBN: 3030517950
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on 'Galois Covers, Grothendieck-Teichmüller Theory and Dessinsd'Enfants', which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike.
Riemann Surfaces and Algebraic Curves
Author: Renzo Cavalieri
Publisher: Cambridge University Press
ISBN: 1316798933
Category : Mathematics
Languages : en
Pages : 197
Book Description
Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.
Publisher: Cambridge University Press
ISBN: 1316798933
Category : Mathematics
Languages : en
Pages : 197
Book Description
Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.
Riemann and Klein Surfaces, Automorphisms, Symmetries and Moduli Spaces
Author: Milagros Izquierdo
Publisher: American Mathematical Soc.
ISBN: 1470410931
Category : Mathematics
Languages : en
Pages : 362
Book Description
This volume contains the proceedings of the conference on Riemann and Klein Surfaces, Symmetries and Moduli Spaces, in honor of Emilio Bujalance, held from June 24-28, 2013, at Linköping University. The conference and this volume are devoted to the mathematics that Emilio Bujalance has worked with in the following areas, all with a computational flavor: Riemann and Klein surfaces, automorphisms of real and complex surfaces, group actions on surfaces and topological properties of moduli spaces of complex curves and Abelian varieties.
Publisher: American Mathematical Soc.
ISBN: 1470410931
Category : Mathematics
Languages : en
Pages : 362
Book Description
This volume contains the proceedings of the conference on Riemann and Klein Surfaces, Symmetries and Moduli Spaces, in honor of Emilio Bujalance, held from June 24-28, 2013, at Linköping University. The conference and this volume are devoted to the mathematics that Emilio Bujalance has worked with in the following areas, all with a computational flavor: Riemann and Klein surfaces, automorphisms of real and complex surfaces, group actions on surfaces and topological properties of moduli spaces of complex curves and Abelian varieties.