Author: Vincent Cossart
Publisher: Springer Nature
ISBN: 3030526402
Category : Mathematics
Languages : en
Pages : 258
Book Description
This book provides a rigorous and self-contained review of desingularization theory. Focusing on arbitrary dimensional schemes, it discusses the important concepts in full generality, complete with proofs, and includes an introduction to the basis of Hironaka’s Theory. The core of the book is a complete proof of desingularization of surfaces; despite being well-known, this result was no more than folklore for many years, with no existing references. Throughout the book there are numerous computations on standard bases, blowing ups and characteristic polyhedra, which will be a source of inspiration for experts exploring bigger dimensions. Beginners will also benefit from a section which presents some easily overlooked pathologies.
Desingularization: Invariants and Strategy
Author: Vincent Cossart
Publisher: Springer Nature
ISBN: 3030526402
Category : Mathematics
Languages : en
Pages : 258
Book Description
This book provides a rigorous and self-contained review of desingularization theory. Focusing on arbitrary dimensional schemes, it discusses the important concepts in full generality, complete with proofs, and includes an introduction to the basis of Hironaka’s Theory. The core of the book is a complete proof of desingularization of surfaces; despite being well-known, this result was no more than folklore for many years, with no existing references. Throughout the book there are numerous computations on standard bases, blowing ups and characteristic polyhedra, which will be a source of inspiration for experts exploring bigger dimensions. Beginners will also benefit from a section which presents some easily overlooked pathologies.
Publisher: Springer Nature
ISBN: 3030526402
Category : Mathematics
Languages : en
Pages : 258
Book Description
This book provides a rigorous and self-contained review of desingularization theory. Focusing on arbitrary dimensional schemes, it discusses the important concepts in full generality, complete with proofs, and includes an introduction to the basis of Hironaka’s Theory. The core of the book is a complete proof of desingularization of surfaces; despite being well-known, this result was no more than folklore for many years, with no existing references. Throughout the book there are numerous computations on standard bases, blowing ups and characteristic polyhedra, which will be a source of inspiration for experts exploring bigger dimensions. Beginners will also benefit from a section which presents some easily overlooked pathologies.
Desingularization Strategies of Three-Dimensional Vector Fields
Author: Felipe Cano Torres
Publisher: Springer
ISBN: 3540471731
Category : Mathematics
Languages : en
Pages : 198
Book Description
For a vector field #3, where Ai are series in X, the algebraic multiplicity measures the singularity at the origin. In this research monograph several strategies are given to make the algebraic multiplicity of a three-dimensional vector field decrease, by means of permissible blowing-ups of the ambient space, i.e. transformations of the type xi=x'ix1, 2i
Publisher: Springer
ISBN: 3540471731
Category : Mathematics
Languages : en
Pages : 198
Book Description
For a vector field #3, where Ai are series in X, the algebraic multiplicity measures the singularity at the origin. In this research monograph several strategies are given to make the algebraic multiplicity of a three-dimensional vector field decrease, by means of permissible blowing-ups of the ambient space, i.e. transformations of the type xi=x'ix1, 2i
Desingularization Strategies for Three-dimensional Vector Fields
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 212
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 212
Book Description
Complex Analytic Desingularization
Author: José Manuel Aroca
Publisher: Springer
ISBN: 4431498222
Category : Mathematics
Languages : en
Pages : 356
Book Description
[From the foreword by B. Teissier] The main ideas of the proof of resolution of singularities of complex-analytic spaces presented here were developed by Heisuke Hironaka in the late 1960s and early 1970s. Since then, a number of proofs, all inspired by Hironaka's general approach, have appeared, the validity of some of them extending beyond the complex analytic case. The proof has now been so streamlined that, although it was seen 50 years ago as one of the most difficult proofs produced by mathematics, it can now be the subject of an advanced university course. Yet, far from being of historical interest only, this long-awaited book will be very rewarding for any mathematician interested in singularity theory. Rather than a proof of a canonical or algorithmic resolution of singularities, what is presented is in fact a masterly study of the infinitely near “worst” singular points of a complex analytic space obtained by successive “permissible” blowing ups and of the way to tame them using certain subspaces of the ambient space. This taming proves by an induction on the dimension that there exist finite sequences of permissible blowing ups at the end of which the worst infinitely near points have disappeared, and this is essentially enough to obtain resolution of singularities. Hironaka’s ideas for resolution of singularities appear here in a purified and geometric form, in part because of the need to overcome the globalization problems appearing in complex analytic geometry. In addition, the book contains an elegant presentation of all the prerequisites of complex analytic geometry, including basic definitions and theorems needed to follow the development of ideas and proofs. Its epilogue presents the use of similar ideas in the resolution of singularities of complex analytic foliations. This text will be particularly useful and interesting for readers of the younger generation who wish to understand one of the most fundamental results in algebraic and analytic geometry and invent possible extensions and applications of the methods created to prove it.
Publisher: Springer
ISBN: 4431498222
Category : Mathematics
Languages : en
Pages : 356
Book Description
[From the foreword by B. Teissier] The main ideas of the proof of resolution of singularities of complex-analytic spaces presented here were developed by Heisuke Hironaka in the late 1960s and early 1970s. Since then, a number of proofs, all inspired by Hironaka's general approach, have appeared, the validity of some of them extending beyond the complex analytic case. The proof has now been so streamlined that, although it was seen 50 years ago as one of the most difficult proofs produced by mathematics, it can now be the subject of an advanced university course. Yet, far from being of historical interest only, this long-awaited book will be very rewarding for any mathematician interested in singularity theory. Rather than a proof of a canonical or algorithmic resolution of singularities, what is presented is in fact a masterly study of the infinitely near “worst” singular points of a complex analytic space obtained by successive “permissible” blowing ups and of the way to tame them using certain subspaces of the ambient space. This taming proves by an induction on the dimension that there exist finite sequences of permissible blowing ups at the end of which the worst infinitely near points have disappeared, and this is essentially enough to obtain resolution of singularities. Hironaka’s ideas for resolution of singularities appear here in a purified and geometric form, in part because of the need to overcome the globalization problems appearing in complex analytic geometry. In addition, the book contains an elegant presentation of all the prerequisites of complex analytic geometry, including basic definitions and theorems needed to follow the development of ideas and proofs. Its epilogue presents the use of similar ideas in the resolution of singularities of complex analytic foliations. This text will be particularly useful and interesting for readers of the younger generation who wish to understand one of the most fundamental results in algebraic and analytic geometry and invent possible extensions and applications of the methods created to prove it.
Motives
Author:
Publisher: American Mathematical Soc.
ISBN: 0821827987
Category : Mathematics
Languages : en
Pages : 694
Book Description
'Motives' were introduced in the mid-1960s by Grothendieck to explain the analogies among the various cohomology theories for algebraic varieties, and to play the role of the missing rational cohomology. This work contains the texts of the lectures presented at the AMS-IMS-SIAM Joint Summer Research Conference on Motives, held in Seattle, in 1991.
Publisher: American Mathematical Soc.
ISBN: 0821827987
Category : Mathematics
Languages : en
Pages : 694
Book Description
'Motives' were introduced in the mid-1960s by Grothendieck to explain the analogies among the various cohomology theories for algebraic varieties, and to play the role of the missing rational cohomology. This work contains the texts of the lectures presented at the AMS-IMS-SIAM Joint Summer Research Conference on Motives, held in Seattle, in 1991.
Rational Points on Varieties
Author: Bjorn Poonen
Publisher: American Mathematical Soc.
ISBN: 1470437732
Category : Mathematics
Languages : en
Pages : 358
Book Description
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.
Publisher: American Mathematical Soc.
ISBN: 1470437732
Category : Mathematics
Languages : en
Pages : 358
Book Description
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.
Degenerate Relative Gromov-Witten Invariants and Symplectic Sums
Author: Joshua R. Davis
Publisher:
ISBN:
Category :
Languages : en
Pages : 86
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 86
Book Description
Lectures on K3 Surfaces
Author: Daniel Huybrechts
Publisher: Cambridge University Press
ISBN: 1316797252
Category : Mathematics
Languages : en
Pages : 499
Book Description
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
Publisher: Cambridge University Press
ISBN: 1316797252
Category : Mathematics
Languages : en
Pages : 499
Book Description
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
Contact and Symplectic Topology
Author: Frédéric Bourgeois
Publisher: Springer Science & Business Media
ISBN: 3319020366
Category : Science
Languages : en
Pages : 538
Book Description
Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.
Publisher: Springer Science & Business Media
ISBN: 3319020366
Category : Science
Languages : en
Pages : 538
Book Description
Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.
Revista Matemática Iberoamericana
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 744
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 744
Book Description