Author: R.W. Davidge
Publisher: Springer Science & Business Media
ISBN: 9401136785
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
The last 30 years have seen a steady development in the range of ceramic materials with potential for high temperature engineering applications: in the 60s, self-bonded silicon carbide and reaction-bonded silicon nitride; in the 70s, improved aluminas, sintered silicon carbide and silicon nitrides (including sialons); in the 80s, various toughened Zr0 materials, ceramic matrix composites reinforced with silicon 2 carbide continuous fibres or whiskers. Design methodologies were evolved in the 70s, incorporating the principles of fracture mechanics and the statistical variation and time dependence of strength. These have been used successfully to predict the engineering behaviour of ceramics in the lower range of temperature. In spite of the above, and the underlying thermodynamic arguments for operations at higher temperatures, there has been a disappointing uptake of these materials in industry for high temperature usc. Most of the successful applications are for low to moderate temperatures such as seals and bearings, and metal cutting and shaping. The reasons have been very well documented and include: • Poor predictability and reliability at high temperature. • High costs relative to competing materials. • Variable reproducibility of manufacturing processes. • Lack of sufficiently sensitive non-destructive techniques. With this as background, a Europhysics Industrial Workshop sponsored by the European Physical Society (EPS) was organised by the Netherlands Energy Research Foundation (ECN) and the Institute for Advanced Materials of the Joint Research Centre (JRC) of the EC, at Petten, North Holland, in April 1990 to consider the status of thermomechanical applications of engineering ceramics.
Designing with Structural Ceramics
Author: R.W. Davidge
Publisher: Springer Science & Business Media
ISBN: 9401136785
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
The last 30 years have seen a steady development in the range of ceramic materials with potential for high temperature engineering applications: in the 60s, self-bonded silicon carbide and reaction-bonded silicon nitride; in the 70s, improved aluminas, sintered silicon carbide and silicon nitrides (including sialons); in the 80s, various toughened Zr0 materials, ceramic matrix composites reinforced with silicon 2 carbide continuous fibres or whiskers. Design methodologies were evolved in the 70s, incorporating the principles of fracture mechanics and the statistical variation and time dependence of strength. These have been used successfully to predict the engineering behaviour of ceramics in the lower range of temperature. In spite of the above, and the underlying thermodynamic arguments for operations at higher temperatures, there has been a disappointing uptake of these materials in industry for high temperature usc. Most of the successful applications are for low to moderate temperatures such as seals and bearings, and metal cutting and shaping. The reasons have been very well documented and include: • Poor predictability and reliability at high temperature. • High costs relative to competing materials. • Variable reproducibility of manufacturing processes. • Lack of sufficiently sensitive non-destructive techniques. With this as background, a Europhysics Industrial Workshop sponsored by the European Physical Society (EPS) was organised by the Netherlands Energy Research Foundation (ECN) and the Institute for Advanced Materials of the Joint Research Centre (JRC) of the EC, at Petten, North Holland, in April 1990 to consider the status of thermomechanical applications of engineering ceramics.
Publisher: Springer Science & Business Media
ISBN: 9401136785
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
The last 30 years have seen a steady development in the range of ceramic materials with potential for high temperature engineering applications: in the 60s, self-bonded silicon carbide and reaction-bonded silicon nitride; in the 70s, improved aluminas, sintered silicon carbide and silicon nitrides (including sialons); in the 80s, various toughened Zr0 materials, ceramic matrix composites reinforced with silicon 2 carbide continuous fibres or whiskers. Design methodologies were evolved in the 70s, incorporating the principles of fracture mechanics and the statistical variation and time dependence of strength. These have been used successfully to predict the engineering behaviour of ceramics in the lower range of temperature. In spite of the above, and the underlying thermodynamic arguments for operations at higher temperatures, there has been a disappointing uptake of these materials in industry for high temperature usc. Most of the successful applications are for low to moderate temperatures such as seals and bearings, and metal cutting and shaping. The reasons have been very well documented and include: • Poor predictability and reliability at high temperature. • High costs relative to competing materials. • Variable reproducibility of manufacturing processes. • Lack of sufficiently sensitive non-destructive techniques. With this as background, a Europhysics Industrial Workshop sponsored by the European Physical Society (EPS) was organised by the Netherlands Energy Research Foundation (ECN) and the Institute for Advanced Materials of the Joint Research Centre (JRC) of the EC, at Petten, North Holland, in April 1990 to consider the status of thermomechanical applications of engineering ceramics.
Ceramic Material Systems
Author: Martin Bechthold
Publisher: Birkhäuser
ISBN: 3038210242
Category : Architecture
Languages : en
Pages : 224
Book Description
Far beyond its long-standing decorative and protective use, architectural ceramics has matured into a material system of great potential. Triggered by material research, design computation and digital fabrication methods, the innovations in ceramic technology are enabling expanded applications for ceramics as a multi-functional, performative material system. Ceramic material systems comprise the full ecosystem from material extraction and processing to the assembly of construction elements and their eventual reuse and recycling. This book establishes the state of the art of this quickly emerging field, with a particular interest in presenting the knowledge needed for developing project-specific solutions that often involve custom ceramic elements. The authors provide a rigorous background of the materials and associated technologies as well as inspiration from the very best contemporary buildings using ceramic systems, along with an overview of emerging ceramic technologies and research. The main section of the book is supplemented with a descriptive and critically commented listing of the most interesting and innovative ceramic products on the market today, ranging from interior tile products to complex active façade systems and roof products.
Publisher: Birkhäuser
ISBN: 3038210242
Category : Architecture
Languages : en
Pages : 224
Book Description
Far beyond its long-standing decorative and protective use, architectural ceramics has matured into a material system of great potential. Triggered by material research, design computation and digital fabrication methods, the innovations in ceramic technology are enabling expanded applications for ceramics as a multi-functional, performative material system. Ceramic material systems comprise the full ecosystem from material extraction and processing to the assembly of construction elements and their eventual reuse and recycling. This book establishes the state of the art of this quickly emerging field, with a particular interest in presenting the knowledge needed for developing project-specific solutions that often involve custom ceramic elements. The authors provide a rigorous background of the materials and associated technologies as well as inspiration from the very best contemporary buildings using ceramic systems, along with an overview of emerging ceramic technologies and research. The main section of the book is supplemented with a descriptive and critically commented listing of the most interesting and innovative ceramic products on the market today, ranging from interior tile products to complex active façade systems and roof products.
Engineered Materials Handbook, Desk Edition
Author: ASM International. Handbook Committee
Publisher: ASM International
ISBN: 0871702835
Category : Technology & Engineering
Languages : en
Pages : 1313
Book Description
A comprehensive reference on the properties, selection, processing, and applications of the most widely used nonmetallic engineering materials. Section 1, General Information and Data, contains information applicable both to polymers and to ceramics and glasses. It includes an illustrated glossary, a collection of engineering tables and data, and a guide to materials selection. Sections 2 through 7 focus on polymeric materials--plastics, elastomers, polymer-matrix composites, adhesives, and sealants--with the information largely updated and expanded from the first three volumes of the Engineered Materials Handbook. Ceramics and glasses are covered in Sections 8 through 12, also with updated and expanded information. Annotation copyright by Book News, Inc., Portland, OR
Publisher: ASM International
ISBN: 0871702835
Category : Technology & Engineering
Languages : en
Pages : 1313
Book Description
A comprehensive reference on the properties, selection, processing, and applications of the most widely used nonmetallic engineering materials. Section 1, General Information and Data, contains information applicable both to polymers and to ceramics and glasses. It includes an illustrated glossary, a collection of engineering tables and data, and a guide to materials selection. Sections 2 through 7 focus on polymeric materials--plastics, elastomers, polymer-matrix composites, adhesives, and sealants--with the information largely updated and expanded from the first three volumes of the Engineered Materials Handbook. Ceramics and glasses are covered in Sections 8 through 12, also with updated and expanded information. Annotation copyright by Book News, Inc., Portland, OR
Advanced Structural Ceramics
Author: Bikramjit Basu
Publisher: John Wiley & Sons
ISBN: 0470497114
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
This book covers the area of advanced ceramic composites broadly, providing important introductory chapters to fundamentals, processing, and applications of advanced ceramic composites. Within each section, specific topics covered highlight the state of the art research within one of the above sections. The organization of the book is designed to provide easy understanding by students as well as professionals interested in advanced ceramic composites. The various sections discuss fundamentals of nature and characteristics of ceramics, processing of ceramics, processing and properties of toughened ceramics, high temperature ceramics, nanoceramics and nanoceramic composites, and bioceramics and biocomposites.
Publisher: John Wiley & Sons
ISBN: 0470497114
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
This book covers the area of advanced ceramic composites broadly, providing important introductory chapters to fundamentals, processing, and applications of advanced ceramic composites. Within each section, specific topics covered highlight the state of the art research within one of the above sections. The organization of the book is designed to provide easy understanding by students as well as professionals interested in advanced ceramic composites. The various sections discuss fundamentals of nature and characteristics of ceramics, processing of ceramics, processing and properties of toughened ceramics, high temperature ceramics, nanoceramics and nanoceramic composites, and bioceramics and biocomposites.
Structural Ceramics
Author: John Jr. Wachtman
Publisher: Elsevier
ISBN: 0323152201
Category : Technology & Engineering
Languages : en
Pages : 401
Book Description
Treatise on Materials Science and Technology, Volume 29: Structural Ceramics presents an overview of structural ceramics. This book begins with a survey of potential uses, designs, and barriers of particular types of structural ceramics. The silicon carbide family, silicon nitride and sialon family, and transformation toughened ceramics are discussed in detail, followed by an analysis of the various processing routes of each family of structural ceramics. This publication concludes with a review of the tribology of structural ceramics, considering many applications for structural ceramics in heat engines and other machinery that involve moving parts which must often resist wear or erosion. This volume is recommended for engineers, scientists, and researchers concerned with structural ceramics.
Publisher: Elsevier
ISBN: 0323152201
Category : Technology & Engineering
Languages : en
Pages : 401
Book Description
Treatise on Materials Science and Technology, Volume 29: Structural Ceramics presents an overview of structural ceramics. This book begins with a survey of potential uses, designs, and barriers of particular types of structural ceramics. The silicon carbide family, silicon nitride and sialon family, and transformation toughened ceramics are discussed in detail, followed by an analysis of the various processing routes of each family of structural ceramics. This publication concludes with a review of the tribology of structural ceramics, considering many applications for structural ceramics in heat engines and other machinery that involve moving parts which must often resist wear or erosion. This volume is recommended for engineers, scientists, and researchers concerned with structural ceramics.
Ceramic Nanocomposites
Author: Rajat Banerjee
Publisher: Elsevier
ISBN: 0857093495
Category : Technology & Engineering
Languages : en
Pages : 617
Book Description
Ceramic nanocomposites have been found to have improved hardness, strength, toughness and creep resistance compared to conventional ceramic matrix composites. Ceramic nanocomposites reviews the structure and properties of these nanocomposites as well as manufacturing and applications.Part one looks at the properties of different ceramic nanocomposites, including thermal shock resistance, flame retardancy, magnetic and optical properties as well as failure mechanisms. Part two deals with the different types of ceramic nanocomposites, including the use of ceramic particles in metal matrix composites, carbon nanotube-reinforced glass-ceramic matrix composites, high temperature superconducting ceramic nanocomposites and ceramic particle nanofluids. Part three details the processing of nanocomposites, including the mechanochemical synthesis of metallic–ceramic composite powders, sintering of ultrafine and nanosized ceramic and metallic particles and the surface treatment of carbon nanotubes using plasma technology. Part four explores the applications of ceramic nanocomposites in such areas as energy production and the biomedical field.With its distinguished editors and international team of expert contributors, Ceramic nanocomposites is a technical guide for professionals requiring knowledge of ceramic nanocomposites, and will also offer a deeper understanding of the subject for researchers and engineers within any field dealing with these materials. - Reviews the structure and properties of ceramic nanocomposites as well as their manufacturing and applications - Examines properties of different ceramic nanocomposites, as well as failure mechanisms - Details the processing of nanocomposites and explores the applications of ceramic nanocomposites in areas such as energy production and the biomedical field
Publisher: Elsevier
ISBN: 0857093495
Category : Technology & Engineering
Languages : en
Pages : 617
Book Description
Ceramic nanocomposites have been found to have improved hardness, strength, toughness and creep resistance compared to conventional ceramic matrix composites. Ceramic nanocomposites reviews the structure and properties of these nanocomposites as well as manufacturing and applications.Part one looks at the properties of different ceramic nanocomposites, including thermal shock resistance, flame retardancy, magnetic and optical properties as well as failure mechanisms. Part two deals with the different types of ceramic nanocomposites, including the use of ceramic particles in metal matrix composites, carbon nanotube-reinforced glass-ceramic matrix composites, high temperature superconducting ceramic nanocomposites and ceramic particle nanofluids. Part three details the processing of nanocomposites, including the mechanochemical synthesis of metallic–ceramic composite powders, sintering of ultrafine and nanosized ceramic and metallic particles and the surface treatment of carbon nanotubes using plasma technology. Part four explores the applications of ceramic nanocomposites in such areas as energy production and the biomedical field.With its distinguished editors and international team of expert contributors, Ceramic nanocomposites is a technical guide for professionals requiring knowledge of ceramic nanocomposites, and will also offer a deeper understanding of the subject for researchers and engineers within any field dealing with these materials. - Reviews the structure and properties of ceramic nanocomposites as well as their manufacturing and applications - Examines properties of different ceramic nanocomposites, as well as failure mechanisms - Details the processing of nanocomposites and explores the applications of ceramic nanocomposites in areas such as energy production and the biomedical field
Computer-Aided Materials Selection During Structural Design
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309176654
Category : Technology & Engineering
Languages : en
Pages : 83
Book Description
The selection of the proper materials for a structural component is a critical activity that is governed by many, often conflicting factors. Incorporating materials expert systems into CAD/CAM operations could assist designers by suggesting potential manufacturing processes for particular products to facilitate concurrent engineering, recommending various materials for a specific part based on a given set of characteristics, or proposing possible modifications of a design if suitable materials for a particular part do not exist. This book reviews the structural design process, determines the elements, and capabilities required for a materials selection expert system to assist design engineers, and recommends the areas of expert system and materials modeling research and development required to devise a materials-specific design system.
Publisher: National Academies Press
ISBN: 0309176654
Category : Technology & Engineering
Languages : en
Pages : 83
Book Description
The selection of the proper materials for a structural component is a critical activity that is governed by many, often conflicting factors. Incorporating materials expert systems into CAD/CAM operations could assist designers by suggesting potential manufacturing processes for particular products to facilitate concurrent engineering, recommending various materials for a specific part based on a given set of characteristics, or proposing possible modifications of a design if suitable materials for a particular part do not exist. This book reviews the structural design process, determines the elements, and capabilities required for a materials selection expert system to assist design engineers, and recommends the areas of expert system and materials modeling research and development required to devise a materials-specific design system.
Advances in Ceramic Biomaterials
Author: Paola Palmero
Publisher: Woodhead Publishing
ISBN: 0081008821
Category : Technology & Engineering
Languages : en
Pages : 501
Book Description
Bioceramics are an important class of biomaterials. Due to their desirable attributes such as biocompatibility and osseointegration, as well as their similarity in structure to bone and teeth, ceramic biomaterials have been successfully used in hard tissue applications. In this book, a team of materials research scientists, engineers, and clinicians bridge the gap between materials science and clinical commercialization providing integrated coverage of bioceramics, their applications and challenges. The book is divided into three parts. The first part is a review of classes of medical-grade ceramic materials, their synthesis and processing as well as methods of property assessment. The second part contains a review of ceramic medical products and devices developed, their evolution, their clinical applications and some of the lessons learned from decades of clinical use. The third part outlines the challenges to improve performance and the directions that novel approaches and advanced technologies are taking, to meet these challenges. With a focus on the dialogue between surgeons, engineers, material scientists, and biologists, this book is a valuable resource for researchers and engineers working toward long-lasting, reliable, customized biomedical ceramic and composites devices. - Edited by a team of experts with expertise in industry and academia - Compiles the most relevant aspects on regulatory issues, standards and engineering of bioceramic medical devices as inspired by commercial and clinical needs - Introduces bioceramics, their evolution and applications in hard tissue engineering and medical devices
Publisher: Woodhead Publishing
ISBN: 0081008821
Category : Technology & Engineering
Languages : en
Pages : 501
Book Description
Bioceramics are an important class of biomaterials. Due to their desirable attributes such as biocompatibility and osseointegration, as well as their similarity in structure to bone and teeth, ceramic biomaterials have been successfully used in hard tissue applications. In this book, a team of materials research scientists, engineers, and clinicians bridge the gap between materials science and clinical commercialization providing integrated coverage of bioceramics, their applications and challenges. The book is divided into three parts. The first part is a review of classes of medical-grade ceramic materials, their synthesis and processing as well as methods of property assessment. The second part contains a review of ceramic medical products and devices developed, their evolution, their clinical applications and some of the lessons learned from decades of clinical use. The third part outlines the challenges to improve performance and the directions that novel approaches and advanced technologies are taking, to meet these challenges. With a focus on the dialogue between surgeons, engineers, material scientists, and biologists, this book is a valuable resource for researchers and engineers working toward long-lasting, reliable, customized biomedical ceramic and composites devices. - Edited by a team of experts with expertise in industry and academia - Compiles the most relevant aspects on regulatory issues, standards and engineering of bioceramic medical devices as inspired by commercial and clinical needs - Introduces bioceramics, their evolution and applications in hard tissue engineering and medical devices
Structures by Design
Author: Rob Whitehead
Publisher: Routledge
ISBN: 1315403129
Category : Architecture
Languages : en
Pages : 844
Book Description
*Winner of the 2021 TAA Textbook Excellence Award* Honorable Mention of the 2021 BTES Book Award Structures by Design: Thinking, Making, Breaking is a new type of structures textbook for architects who prefer to learn using the hands-on, creative problem-solving techniques typically found in a design studio. Instead of presenting structures as abstract concepts defined by formulas and diagrams, this book uses a project-based approach to demonstrate how a range of efficient, effective, and expressive architectural solutions can be generated, tested, and revised. Each section of the book is focused on a particular manner by which structural resistance is provided: Form (Arches and Cables), Sections (Beams, Slabs, and Columns), Vectors (Trusses and Space Frames), Surfaces (Shells and Plates), and Frames (Connections and High-Rises). The design exercises featured in each chapter use the Think, Make, Break method of reiterative design to develop and evaluate different structural options. A variety of structural design tools will be used, including the human body, physical models, historical precedents, static diagrams, traditional formulae, and advanced digital analysis. The book can be incorporated into various course curricula and studio exercises because of the flexibility of the format and range of expertise required for these explorations. More than 500 original illustrations and photos provide example solutions and inspiration for further design exploration.
Publisher: Routledge
ISBN: 1315403129
Category : Architecture
Languages : en
Pages : 844
Book Description
*Winner of the 2021 TAA Textbook Excellence Award* Honorable Mention of the 2021 BTES Book Award Structures by Design: Thinking, Making, Breaking is a new type of structures textbook for architects who prefer to learn using the hands-on, creative problem-solving techniques typically found in a design studio. Instead of presenting structures as abstract concepts defined by formulas and diagrams, this book uses a project-based approach to demonstrate how a range of efficient, effective, and expressive architectural solutions can be generated, tested, and revised. Each section of the book is focused on a particular manner by which structural resistance is provided: Form (Arches and Cables), Sections (Beams, Slabs, and Columns), Vectors (Trusses and Space Frames), Surfaces (Shells and Plates), and Frames (Connections and High-Rises). The design exercises featured in each chapter use the Think, Make, Break method of reiterative design to develop and evaluate different structural options. A variety of structural design tools will be used, including the human body, physical models, historical precedents, static diagrams, traditional formulae, and advanced digital analysis. The book can be incorporated into various course curricula and studio exercises because of the flexibility of the format and range of expertise required for these explorations. More than 500 original illustrations and photos provide example solutions and inspiration for further design exploration.
Mechanical Testing Methodology for Ceramic Design and Reliability
Author: David C. Cranmer
Publisher: CRC Press
ISBN: 9780824795672
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
Describing the theoretical aspects of chemistry and microstructure that affect mechanical properties, this work offers coverage of ceramic mechanical property measurement techniques for use in component design as well as lifetime and reliability predictions. It presents procedures from both room- and elevated-temperature applications.
Publisher: CRC Press
ISBN: 9780824795672
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
Describing the theoretical aspects of chemistry and microstructure that affect mechanical properties, this work offers coverage of ceramic mechanical property measurement techniques for use in component design as well as lifetime and reliability predictions. It presents procedures from both room- and elevated-temperature applications.