Designing for Deck Stress Over Precast Panels in Negative Moment Regions

Designing for Deck Stress Over Precast Panels in Negative Moment Regions PDF Author: Keaton Munsterman
Publisher:
ISBN:
Category :
Languages : en
Pages : 210

Get Book Here

Book Description
One of the leading causes of structural deficiencies in the United States Bridge Inventory is related to deterioration and durability problems with concrete bridge decks (NCHRP 2004). The primary issue with bridge decks is related to cracking of the concrete that provides a direct conduit for moisture and other corrosion agents to permeate and attack the reinforcing steel. Adequate reinforcing steel is needed in the deck to minimize crack widths and therefore limit corrosion of reinforcing steel. A particular case of interest occurs when the bridge deck is constructed using partial-depth precast concrete deck panels (PCP) with cast-in-place (CIP) concrete topping. When this type of deck construction is used over the negative moment region of continuous steel or concrete girders, the amount of reinforcing steel that should be placed within the CIP concrete topping to provide adequate crack control is not currently well understood. This thesis is part of a larger study being conducted for the Texas Department of Transportation that is examining this issue. In the study reported in this thesis, two newly constructed bridges were instrumented to monitor the behavior of the bridge deck. These bridges did not use continuous girders, but rather had simply supported prestressed concrete girders, with a bridge deck constructed using a “poor-boy” construction joint detail over interior bents. Each bridge utilized three different reinforcement layouts centered over an interior bent within the poor-boy joint detail. Strain gages in each portion provided constant readings to display the distribution of strain across the bridge deck. Each bridge was monitored over a period from when the deck was cast until when the bridge was opened to traffic. Live load tests were also conducted to provide data on strains induced by heavy trucks. Based on the field data, no clear correlation was found between the amount of steel added and the strain measured. However, based on the measured data combined with field observations of cracking, the current standard reinforcement appears to be adequate in controlling the crack widths for the poor-boy deck detail. While the poor-boy deck joint detail is different from deck details used over negative moment regions of continuous girders, this data provides useful insights in to bridge deck behavior that will help guide future phases of the larger study.

Designing for Deck Stress Over Precast Panels in Negative Moment Regions

Designing for Deck Stress Over Precast Panels in Negative Moment Regions PDF Author: Keaton Munsterman
Publisher:
ISBN:
Category :
Languages : en
Pages : 210

Get Book Here

Book Description
One of the leading causes of structural deficiencies in the United States Bridge Inventory is related to deterioration and durability problems with concrete bridge decks (NCHRP 2004). The primary issue with bridge decks is related to cracking of the concrete that provides a direct conduit for moisture and other corrosion agents to permeate and attack the reinforcing steel. Adequate reinforcing steel is needed in the deck to minimize crack widths and therefore limit corrosion of reinforcing steel. A particular case of interest occurs when the bridge deck is constructed using partial-depth precast concrete deck panels (PCP) with cast-in-place (CIP) concrete topping. When this type of deck construction is used over the negative moment region of continuous steel or concrete girders, the amount of reinforcing steel that should be placed within the CIP concrete topping to provide adequate crack control is not currently well understood. This thesis is part of a larger study being conducted for the Texas Department of Transportation that is examining this issue. In the study reported in this thesis, two newly constructed bridges were instrumented to monitor the behavior of the bridge deck. These bridges did not use continuous girders, but rather had simply supported prestressed concrete girders, with a bridge deck constructed using a “poor-boy” construction joint detail over interior bents. Each bridge utilized three different reinforcement layouts centered over an interior bent within the poor-boy joint detail. Strain gages in each portion provided constant readings to display the distribution of strain across the bridge deck. Each bridge was monitored over a period from when the deck was cast until when the bridge was opened to traffic. Live load tests were also conducted to provide data on strains induced by heavy trucks. Based on the field data, no clear correlation was found between the amount of steel added and the strain measured. However, based on the measured data combined with field observations of cracking, the current standard reinforcement appears to be adequate in controlling the crack widths for the poor-boy deck detail. While the poor-boy deck joint detail is different from deck details used over negative moment regions of continuous girders, this data provides useful insights in to bridge deck behavior that will help guide future phases of the larger study.

Improved Design Specifications for Horizontally Curved Steel Girder Highway Bridges

Improved Design Specifications for Horizontally Curved Steel Girder Highway Bridges PDF Author: Dann H. Hall
Publisher: Transportation Research Board
ISBN: 9780309063166
Category : Technology & Engineering
Languages : en
Pages : 140

Get Book Here

Book Description


Recommendations for the Use of Precast Deck Panels at Expansion Joints

Recommendations for the Use of Precast Deck Panels at Expansion Joints PDF Author:
Publisher:
ISBN:
Category : Concrete bridges
Languages : en
Pages : 128

Get Book Here

Book Description


Modern Techniques in Bridge Engineering

Modern Techniques in Bridge Engineering PDF Author: Khaled Mahmoud
Publisher: CRC Press
ISBN: 0415684153
Category : Science
Languages : en
Pages : 338

Get Book Here

Book Description
Due to significant economic growth in the last few decades, increasing traffic loads impose tremendous demand on bridge structures. This, coupled with ongoing deterioration of bridges, introduces a unique challenge to bridge engineers in maintaining service of these infrastructure assets without disruption to vital economic and social activities. This requires innovative solutions and optimized methodologies to achieve safe and efficient operation of bridge structures. Bridge engineering practitioners, researchers, owners, and contractors from all over the world presented on modern techniques in design, inspection, monitoring and rehabilitation of bridge structures, at the Sixth New York City Bridge Conference held New York City on July 25-26, 2011. This book contains a select number of papers presented at the conference. This group of papers provides a state-of-the-art in bridge engineering and is of interest to any reader in the field.

LRFD Bridge Design

LRFD Bridge Design PDF Author: Tim Huff
Publisher: CRC Press
ISBN: 1000543374
Category : Technology & Engineering
Languages : en
Pages : 387

Get Book Here

Book Description
This book examines and explains material from the 9th edition of the AASHTO LRFD Bridge Design Specifications, including deck and parapet design, load calculations, limit states and load combinations, concrete and steel I-girder design, bearing design, and more. With increased focus on earthquake resiliency, two separate chapters– one on conventional seismic design and the other on seismic isolation applied to bridges– will fully address this vital topic. The primary focus is on steel and concrete I-girder bridges, with regard to both superstructure and substructure design. Features: Includes several worked examples for a project bridge as well as actual bridges designed by the author Examines seismic design concepts and design details for bridges Presents the latest material based on the 9th edition of the LRFD Bridge Design Specifications Covers fatigue, strength, service, and extreme event limit states Includes numerous solved problems and exercises at the end of each chapter to illustrate the concepts presented LRFD Bridge Design: Fundamentals and Applications will serve as a useful text for graduate and upper-level undergraduate civil engineering students as well as practicing structural engineers.

Composite Action of Precast Panel Bridge Decks in Negative Moment Regions

Composite Action of Precast Panel Bridge Decks in Negative Moment Regions PDF Author:
Publisher:
ISBN:
Category : Composite construction
Languages : en
Pages : 180

Get Book Here

Book Description


Theory and Design of Bridges

Theory and Design of Bridges PDF Author: Petros P. Xanthakos
Publisher: John Wiley & Sons
ISBN: 9780471570974
Category : Technology & Engineering
Languages : en
Pages : 1466

Get Book Here

Book Description
Indeed, this essential working reference for practicing civil engineers uniquely reflects today's gradual transition from allowable stress design to Load and Resistance Factor Design by presenting LRFD specifications - developed from research requested by AASH-TO and initiated by the NCHRP - which spell out new provisions in areas ranging from load models and load factors to bridge substructure elements and foundations.

Design of Precast, Prestressed Bridge Girders Made Continuous

Design of Precast, Prestressed Bridge Girders Made Continuous PDF Author: R. G. Oesterle
Publisher: Transportation Research Board National Research
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 108

Get Book Here

Book Description
This report documents and presents results of a study to determine time-dependent behavior and relevant design criteria for simple-span precast, prestressed bridge girders made continuous. A questionnaire was used to determine current practice. Creep and shrinkage tests of steam-cured concrete loaded at an early age were made. Computer simulations were used to investigate the effects of time-dependent material behavior and variation in design parameters on the effective continuity for live load plus impact. The findings suggest that positive moment connections in the diaphragms at the piers are not required and provide no structural advantages. The findings also suggest that effective continuity for live load plus impact can vary from 0 to 100% dependent on the design parameters and timing of construction. Computer analyses were also used to determine an upper limit for the amount of negative moment reinforcement over the supports to insure full moment redistribution and attainment of maximum bridge strength. New computer programs were developed for simplified analysis to determine time-dependent effects and service moments. Recommendations for design procedures were presented and design examples given.

Durability of Bridge Structures

Durability of Bridge Structures PDF Author: Khaled Mahmoud
Publisher: CRC Press
ISBN: 1315856840
Category : Technology & Engineering
Languages : en
Pages : 314

Get Book Here

Book Description
On Thursday evening, May 23, 2013, the Interstate 5 Bridge over the Skagit River in Washington state collapsed due to impact by an oversize truck, dumping vehicles and people into the water. Fortunately, the bridge is located in a rural area and nobody was killed in the accident, but three people were rescued after their cars plunged into the frigi

Constructional Steel Design

Constructional Steel Design PDF Author: P.J. Dowling
Publisher: CRC Press
ISBN: 1482296705
Category : Architecture
Languages : en
Pages : 991

Get Book Here

Book Description
Constructional Steel Design presents state-of-the-art knowledge on the design of steel structures. Independent of national design codes, subjects include materials aspects of steel as well as metallurgy, fatigue, corrosion, inspection, fire protection, element behaviour and strength.