Author: J. Schijve
Publisher: Springer Science & Business Media
ISBN: 1402068085
Category : Science
Languages : en
Pages : 627
Book Description
Fatigue of structures and materials covers a wide scope of different topics. The purpose of the present book is to explain these topics, to indicate how they can be analyzed, and how this can contribute to the designing of fatigue resistant structures and to prevent structural fatigue problems in service. Chapter 1 gives a general survey of the topic with brief comments on the signi?cance of the aspects involved. This serves as a kind of a program for the following chapters. The central issues in this book are predictions of fatigue properties and designing against fatigue. These objectives cannot be realized without a physical and mechanical understanding of all relevant conditions. In Chapter 2 the book starts with basic concepts of what happens in the material of a structure under cyclic loads. It illustrates the large number of variables which can affect fatigue properties and it provides the essential background knowledge for subsequent chapters. Different subjects are presented in the following main parts: • Basic chapters on fatigue properties and predictions (Chapters 2–8) • Load spectra and fatigue under variable-amplitude loading (Chapters 9–11) • Fatigue tests and scatter (Chapters 12 and 13) • Special fatigue conditions (Chapters 14–17) • Fatigue of joints and structures (Chapters 18–20) • Fiber-metal laminates (Chapter 21) Each chapter presents a discussion of a speci?c subject.
Fatigue of Structures and Materials
Author: J. Schijve
Publisher: Springer Science & Business Media
ISBN: 1402068085
Category : Science
Languages : en
Pages : 627
Book Description
Fatigue of structures and materials covers a wide scope of different topics. The purpose of the present book is to explain these topics, to indicate how they can be analyzed, and how this can contribute to the designing of fatigue resistant structures and to prevent structural fatigue problems in service. Chapter 1 gives a general survey of the topic with brief comments on the signi?cance of the aspects involved. This serves as a kind of a program for the following chapters. The central issues in this book are predictions of fatigue properties and designing against fatigue. These objectives cannot be realized without a physical and mechanical understanding of all relevant conditions. In Chapter 2 the book starts with basic concepts of what happens in the material of a structure under cyclic loads. It illustrates the large number of variables which can affect fatigue properties and it provides the essential background knowledge for subsequent chapters. Different subjects are presented in the following main parts: • Basic chapters on fatigue properties and predictions (Chapters 2–8) • Load spectra and fatigue under variable-amplitude loading (Chapters 9–11) • Fatigue tests and scatter (Chapters 12 and 13) • Special fatigue conditions (Chapters 14–17) • Fatigue of joints and structures (Chapters 18–20) • Fiber-metal laminates (Chapter 21) Each chapter presents a discussion of a speci?c subject.
Publisher: Springer Science & Business Media
ISBN: 1402068085
Category : Science
Languages : en
Pages : 627
Book Description
Fatigue of structures and materials covers a wide scope of different topics. The purpose of the present book is to explain these topics, to indicate how they can be analyzed, and how this can contribute to the designing of fatigue resistant structures and to prevent structural fatigue problems in service. Chapter 1 gives a general survey of the topic with brief comments on the signi?cance of the aspects involved. This serves as a kind of a program for the following chapters. The central issues in this book are predictions of fatigue properties and designing against fatigue. These objectives cannot be realized without a physical and mechanical understanding of all relevant conditions. In Chapter 2 the book starts with basic concepts of what happens in the material of a structure under cyclic loads. It illustrates the large number of variables which can affect fatigue properties and it provides the essential background knowledge for subsequent chapters. Different subjects are presented in the following main parts: • Basic chapters on fatigue properties and predictions (Chapters 2–8) • Load spectra and fatigue under variable-amplitude loading (Chapters 9–11) • Fatigue tests and scatter (Chapters 12 and 13) • Special fatigue conditions (Chapters 14–17) • Fatigue of joints and structures (Chapters 18–20) • Fiber-metal laminates (Chapter 21) Each chapter presents a discussion of a speci?c subject.
Metal Fatigue in Engineering
Author: Henry O. Fuchs
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
Applied Optimal Design Mechanical and Structural Systems Edward J. Haug & Jasbir S. Arora This computer-aided design text presents and illustrates techniques for optimizing the design of a wide variety of mechanical and structural systems through the use of nonlinear programming and optimal control theory. A state space method is adopted that incorporates the system model as an integral part of the design formulations. Step-by-step numerical algorithms are given for each method of optimal design. Basic properties of the equations of mechanics are used to carry out design sensitivity analysis and optimization, with numerical efficiency and generality that is in most cases an order of magnitude faster in digital computation than applications using standard nonlinear programming methods. 1979 Optimum Design of Mechanical Elements, 2nd Ed. Ray C. Johnson The two basic optimization techniques, the method of optimal design (MOD) and automated optimal design (AOD), discussed in this valuable work can be applied to the optimal design of mechanical elements commonly found in machinery, mechanisms, mechanical assemblages, products, and structures. The many illustrative examples used to explicate these techniques include such topics as tensile bars, torsion bars, shafts in combined loading, helical and spur gears, helical springs, and hydrostatic journal bearings. The author covers curve fitting, equation simplification, material properties, and failure theories, as well as the effects of manufacturing errors on product performance and the need for a factor of safety in design work. 1980 Globally Optimal Design Douglass J. Wilde Here are new analytic optimization procedures effective where numerical methods either take too long or do not provide correct answers. This book uses mathematics sparingly, proving only results generated by examples. It defines simple design methods guaranteed to give the global, rather than any local, optimum through computations easy enough to be done on a manual calculator. The author confronts realistic situations: determining critical constraints; dealing with negative contributions; handling power function; tackling logarithmic and exponential nonlinearities; coping with standard sizes and indivisible components; and resolving conflicting objectives and logical restrictions. Special mathematical structures are exposed and used to solve design problems. 1978
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
Applied Optimal Design Mechanical and Structural Systems Edward J. Haug & Jasbir S. Arora This computer-aided design text presents and illustrates techniques for optimizing the design of a wide variety of mechanical and structural systems through the use of nonlinear programming and optimal control theory. A state space method is adopted that incorporates the system model as an integral part of the design formulations. Step-by-step numerical algorithms are given for each method of optimal design. Basic properties of the equations of mechanics are used to carry out design sensitivity analysis and optimization, with numerical efficiency and generality that is in most cases an order of magnitude faster in digital computation than applications using standard nonlinear programming methods. 1979 Optimum Design of Mechanical Elements, 2nd Ed. Ray C. Johnson The two basic optimization techniques, the method of optimal design (MOD) and automated optimal design (AOD), discussed in this valuable work can be applied to the optimal design of mechanical elements commonly found in machinery, mechanisms, mechanical assemblages, products, and structures. The many illustrative examples used to explicate these techniques include such topics as tensile bars, torsion bars, shafts in combined loading, helical and spur gears, helical springs, and hydrostatic journal bearings. The author covers curve fitting, equation simplification, material properties, and failure theories, as well as the effects of manufacturing errors on product performance and the need for a factor of safety in design work. 1980 Globally Optimal Design Douglass J. Wilde Here are new analytic optimization procedures effective where numerical methods either take too long or do not provide correct answers. This book uses mathematics sparingly, proving only results generated by examples. It defines simple design methods guaranteed to give the global, rather than any local, optimum through computations easy enough to be done on a manual calculator. The author confronts realistic situations: determining critical constraints; dealing with negative contributions; handling power function; tackling logarithmic and exponential nonlinearities; coping with standard sizes and indivisible components; and resolving conflicting objectives and logical restrictions. Special mathematical structures are exposed and used to solve design problems. 1978
Mechanical Fatigue of Metals
Author: José A.F.O. Correia
Publisher: Springer
ISBN: 3030139808
Category : Science
Languages : en
Pages : 386
Book Description
This volume contains the proceedings of the XIX International Colloquium on Mechanical Fatigue of Metals, held at the Faculty of Engineering of the University of Porto, Portugal, 5-7 September 2018. This International Colloquium facilitated and encouraged the exchange of knowledge and experiences among the different communities involved in both basic and applied research in the field of the fatigue of metals, looking at the problem of fatigue exploring analytical and numerical simulative approaches. Fatigue damage represents one of the most important types of damage to which structural materials are subjected in normal industrial services that can finally result in a sudden and unexpected abrupt fracture. Since metal alloys are still today the most used materials in designing the majority of components and structures able to carry the highest service loads, the study of the different aspects of metals fatigue attracts permanent attention of scientists, engineers and designers.
Publisher: Springer
ISBN: 3030139808
Category : Science
Languages : en
Pages : 386
Book Description
This volume contains the proceedings of the XIX International Colloquium on Mechanical Fatigue of Metals, held at the Faculty of Engineering of the University of Porto, Portugal, 5-7 September 2018. This International Colloquium facilitated and encouraged the exchange of knowledge and experiences among the different communities involved in both basic and applied research in the field of the fatigue of metals, looking at the problem of fatigue exploring analytical and numerical simulative approaches. Fatigue damage represents one of the most important types of damage to which structural materials are subjected in normal industrial services that can finally result in a sudden and unexpected abrupt fracture. Since metal alloys are still today the most used materials in designing the majority of components and structures able to carry the highest service loads, the study of the different aspects of metals fatigue attracts permanent attention of scientists, engineers and designers.
Fatigue of Metals
Author: P. G. Forrest
Publisher: Elsevier
ISBN: 1483160734
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
Fatigue of Metals provides a general account of the failure of metals due to fatigue, a subject of great practical importance in the field of engineering and metallurgy. The book covers a wide range of topics on the study of the fatigue of metals. The text presents in the first three chapters the characteristics and detection of fatigue fractures; methods of fatigue testing; and the fatigue strengths of different materials. The resistance of materials to fatigue under complex stress; the determination and effects of stress concentration; influence of surface treatment on fatigue strength; and effects of corrosion and temperature are also studied in detail. In relation to the previous chapters of fatigue information, a chapter is devoted to engineering design to prevent fatigue. The last two chapters provide a brief historical survey of the developments of the study of the mechanism of fatigue and fatigue of non-metallic materials such as wood, plastic, rubber, glass, and concrete. Mechanical engineers, designers, metallurgists, researchers, and students will find the book as a good reference material.
Publisher: Elsevier
ISBN: 1483160734
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
Fatigue of Metals provides a general account of the failure of metals due to fatigue, a subject of great practical importance in the field of engineering and metallurgy. The book covers a wide range of topics on the study of the fatigue of metals. The text presents in the first three chapters the characteristics and detection of fatigue fractures; methods of fatigue testing; and the fatigue strengths of different materials. The resistance of materials to fatigue under complex stress; the determination and effects of stress concentration; influence of surface treatment on fatigue strength; and effects of corrosion and temperature are also studied in detail. In relation to the previous chapters of fatigue information, a chapter is devoted to engineering design to prevent fatigue. The last two chapters provide a brief historical survey of the developments of the study of the mechanism of fatigue and fatigue of non-metallic materials such as wood, plastic, rubber, glass, and concrete. Mechanical engineers, designers, metallurgists, researchers, and students will find the book as a good reference material.
Fatigue Design
Author: Carl C. Osgood
Publisher: Elsevier
ISBN: 1483155226
Category : Technology & Engineering
Languages : en
Pages : 617
Book Description
Fatigue Design, Second Edition discusses solutions of previous problems in fatigue as controlled by their particular conditions. The book aims to demonstrate the limitations of some methods and explores the realism and validity of the resulting solutions. The text is comprised of four chapters that tackle a specific area of concern. Chapter 1 provides the introduction and covers the scope, level, and limitations of the book. Chapter 2 deals with the characteristics of design approach, and Chapter 3 talks about the prediction of fatigue life. The last chapter discusses the general factors in fatigue. The book will be of great interest to researchers and professionals concerned with fatigue analysis, such as engineers and designers.
Publisher: Elsevier
ISBN: 1483155226
Category : Technology & Engineering
Languages : en
Pages : 617
Book Description
Fatigue Design, Second Edition discusses solutions of previous problems in fatigue as controlled by their particular conditions. The book aims to demonstrate the limitations of some methods and explores the realism and validity of the resulting solutions. The text is comprised of four chapters that tackle a specific area of concern. Chapter 1 provides the introduction and covers the scope, level, and limitations of the book. Chapter 2 deals with the characteristics of design approach, and Chapter 3 talks about the prediction of fatigue life. The last chapter discusses the general factors in fatigue. The book will be of great interest to researchers and professionals concerned with fatigue analysis, such as engineers and designers.
Introduction to Fatigue in Metals and Composites
Author: R.L. Carlson
Publisher: Springer Science & Business Media
ISBN: 9780412572005
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
An Introduction to Fatigue in Metals and Composites provides a balanced treatment of the phenomenon of fatigue in metals, nonmetals and composites with polymeric, metallic and ceramic matrices. The applicability of the safe life philosophy of design is examined for each of the materials. Attention is also focused on the stable crack growth phase of fatigue and differences in the operative mechanisms for the various classes of materials are considered. The impacts of these differences on the development of damage tolerance strategies are examined. Among topics discussed are; variable amplitude loading with tensile and compressive overload; closure obstruction; bridging mechanisms; mixed mode states; small cracks; delamination mechanisms and environmental conditions. The arrangement and presentation of the topics are such that An Introduction to Fatigue in Metals and Composites can serve as a course text for mechanical, civil, aeronautical and astronautical engineering and material science courses as well as a reference for engineers who are concerned with fatigue testing and aircraft, automobile and engine design.
Publisher: Springer Science & Business Media
ISBN: 9780412572005
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
An Introduction to Fatigue in Metals and Composites provides a balanced treatment of the phenomenon of fatigue in metals, nonmetals and composites with polymeric, metallic and ceramic matrices. The applicability of the safe life philosophy of design is examined for each of the materials. Attention is also focused on the stable crack growth phase of fatigue and differences in the operative mechanisms for the various classes of materials are considered. The impacts of these differences on the development of damage tolerance strategies are examined. Among topics discussed are; variable amplitude loading with tensile and compressive overload; closure obstruction; bridging mechanisms; mixed mode states; small cracks; delamination mechanisms and environmental conditions. The arrangement and presentation of the topics are such that An Introduction to Fatigue in Metals and Composites can serve as a course text for mechanical, civil, aeronautical and astronautical engineering and material science courses as well as a reference for engineers who are concerned with fatigue testing and aircraft, automobile and engine design.
Fatigue Design
Author: Eliahu Zahavi
Publisher: CRC Press
ISBN: 135144882X
Category : Technology & Engineering
Languages : en
Pages : 336
Book Description
Modern analytical theories of fatigue coupled with a knowledge of processing effects on metals make up the sound basis for designing machine parts that are free from unexpected failure. Fatigue Design: Life Expectancy of Machine Parts provides the information and the tools needed for optimal design. It highlights practical approaches for effectively solving fatigue problems, including minimizing the risk of hidden perils that may arise during production processes or from exposure to the environment.The material is presented with a dual approach: the excellent coverage of the theoretical aspects is accented by practical illustrations of the behavior of machine parts. The theoretical approach combines the fundamentals of solid mechanics, fatigue analysis, and crack propagation. The chapters covering fatigue theories are given special emphasis, starting with the basics and progressing to complicated multiaxial nonlinear problems.The practical approach concentrates on the effects of surface processing on fatigue life and it illustrates many faceted fatigue problems taken from case studies. The solutions demonstrate the authors' detailed analyses of failure and are intended to be used as preventive guidelines. The cases are a unique feature of the book. The numerical method used is the finite element method, and is presented with clear explanations and illustrations.Fatigue Design: Life Expectancy of Machine Parts is an extremely valuable tool for both practicing design engineers and engineering students.
Publisher: CRC Press
ISBN: 135144882X
Category : Technology & Engineering
Languages : en
Pages : 336
Book Description
Modern analytical theories of fatigue coupled with a knowledge of processing effects on metals make up the sound basis for designing machine parts that are free from unexpected failure. Fatigue Design: Life Expectancy of Machine Parts provides the information and the tools needed for optimal design. It highlights practical approaches for effectively solving fatigue problems, including minimizing the risk of hidden perils that may arise during production processes or from exposure to the environment.The material is presented with a dual approach: the excellent coverage of the theoretical aspects is accented by practical illustrations of the behavior of machine parts. The theoretical approach combines the fundamentals of solid mechanics, fatigue analysis, and crack propagation. The chapters covering fatigue theories are given special emphasis, starting with the basics and progressing to complicated multiaxial nonlinear problems.The practical approach concentrates on the effects of surface processing on fatigue life and it illustrates many faceted fatigue problems taken from case studies. The solutions demonstrate the authors' detailed analyses of failure and are intended to be used as preventive guidelines. The cases are a unique feature of the book. The numerical method used is the finite element method, and is presented with clear explanations and illustrations.Fatigue Design: Life Expectancy of Machine Parts is an extremely valuable tool for both practicing design engineers and engineering students.
Fatigue and Corrosion in Metals
Author: Pietro Paolo Milella
Publisher: Springer Nature
ISBN: 3031513509
Category :
Languages : en
Pages : 965
Book Description
Publisher: Springer Nature
ISBN: 3031513509
Category :
Languages : en
Pages : 965
Book Description
Fatigue and Durability of Structural Materials
Author: Gary R. Halford
Publisher: ASM International
ISBN: 1615030743
Category : Architecture
Languages : en
Pages : 471
Book Description
Fatigue and Durability of Structural Materials explains how mechanical material behavior relates to the design of structural machine components. The major emphasis is on fatigue and failure behavior using engineering models that have been developed to predict, in advance of service, acceptable fatigue and other durability-related lifetimes. The book covers broad classes of materials used for high-performance structural applications such as aerospace components, automobiles, and power generation systems. Coverage focuses on metallic materials but also addresses unique capabilities of important nonmetals. The concepts are applied to behavior at room or ambient temperatures; a planned second volume will address behavior at higher-temperatures. The volume is a repository of the most significant contributions by the authors to the art and science of material and structural durability over the past half century. During their careers, including 40 years of direct collaboration, they have developed a host of durability models that are based on sound physical and engineering principles. Yet, the models and interpretation of behavior have a unique simplicity that is appreciated by the practicing engineer as well as the beginning student. In addition to their own pioneering work, the authors also present the work of numerous others who have provided useful results that have moved progress in these fields. This book will be of immense value to practicing mechanical and materials engineers and designers charged with producing structural components with adequate durability. The coverage is appropriate for a range of technical levels from undergraduate engineering students through material behavior researchers and model developers. It will be of interest to personnel in the automotive and off-highway vehicle manufacturing industry, the aeronautical industry, space propulsion and the power generation/conversion industry, the electric power industry, the machine tool industry, and any industry associated with the design and manufacturing of mechanical equipment subject to cyclic loads.
Publisher: ASM International
ISBN: 1615030743
Category : Architecture
Languages : en
Pages : 471
Book Description
Fatigue and Durability of Structural Materials explains how mechanical material behavior relates to the design of structural machine components. The major emphasis is on fatigue and failure behavior using engineering models that have been developed to predict, in advance of service, acceptable fatigue and other durability-related lifetimes. The book covers broad classes of materials used for high-performance structural applications such as aerospace components, automobiles, and power generation systems. Coverage focuses on metallic materials but also addresses unique capabilities of important nonmetals. The concepts are applied to behavior at room or ambient temperatures; a planned second volume will address behavior at higher-temperatures. The volume is a repository of the most significant contributions by the authors to the art and science of material and structural durability over the past half century. During their careers, including 40 years of direct collaboration, they have developed a host of durability models that are based on sound physical and engineering principles. Yet, the models and interpretation of behavior have a unique simplicity that is appreciated by the practicing engineer as well as the beginning student. In addition to their own pioneering work, the authors also present the work of numerous others who have provided useful results that have moved progress in these fields. This book will be of immense value to practicing mechanical and materials engineers and designers charged with producing structural components with adequate durability. The coverage is appropriate for a range of technical levels from undergraduate engineering students through material behavior researchers and model developers. It will be of interest to personnel in the automotive and off-highway vehicle manufacturing industry, the aeronautical industry, space propulsion and the power generation/conversion industry, the electric power industry, the machine tool industry, and any industry associated with the design and manufacturing of mechanical equipment subject to cyclic loads.
Fatigue Crack Propagation in Metals and Alloys
Author: Ulrich Krupp
Publisher: John Wiley & Sons
ISBN: 3527315373
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
This comprehensive overview of the whole field of fatigue and fracture of metallic materials covers both the theoretical background and some of the latest experimental techniques. It provides a summary of the complex interactions between material microstructure and cracks, classifying them with respect to the overall damage process with a focus on microstructurally short cracks and dynamic embrittlement. It furthermore introduces new concepts for the numerical treatment of fatigue microcrack propagation and their implementation in fatigue-life prediction models.This comprehensive overview of the whole field of fatigue and fracture of metallic materials covers both the theoretical background and the latest experimental techniques. It provides a summary of the complex interactions between material microstructure and cracks, classifying them with respect to the overall damage process. It furthermore introduces new concepts for the numerical treatment of fatigue microcrack propagation and their implementation in fatigue-life prediction models.
Publisher: John Wiley & Sons
ISBN: 3527315373
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
This comprehensive overview of the whole field of fatigue and fracture of metallic materials covers both the theoretical background and some of the latest experimental techniques. It provides a summary of the complex interactions between material microstructure and cracks, classifying them with respect to the overall damage process with a focus on microstructurally short cracks and dynamic embrittlement. It furthermore introduces new concepts for the numerical treatment of fatigue microcrack propagation and their implementation in fatigue-life prediction models.This comprehensive overview of the whole field of fatigue and fracture of metallic materials covers both the theoretical background and the latest experimental techniques. It provides a summary of the complex interactions between material microstructure and cracks, classifying them with respect to the overall damage process. It furthermore introduces new concepts for the numerical treatment of fatigue microcrack propagation and their implementation in fatigue-life prediction models.