Design for Thermal Stresses

Design for Thermal Stresses PDF Author: Randall F. Barron
Publisher: John Wiley & Sons
ISBN: 1118094530
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
The tools engineers need for effective thermal stress design Thermal stress concerns arise in many engineering situations, from aerospace structures to nuclear fuel rods to concrete highway slabs on a hot summer day. Having the tools to understand and alleviate these potential stresses is key for engineers in effectively executing a wide range of modern design tasks. Design for Thermal Stresses provides an accessible and balanced resource geared towards real-world applications. Presenting both the analysis and synthesis needed for accurate design, the book emphasizes key principles, techniques, and approaches for solving thermal stress problems. Moving from basic to advanced topics, chapters cover: Bars, beams, and trusses from a "strength of materials" perspective Plates, shells, and thick-walled vessels from a "theory of elasticity" perspective Thermal buckling in columns, beams, plates, and shells Written for students and working engineers, this book features numerous sample problems demonstrating concepts at work. In addition, appendices include important SI units, relevant material properties, and mathematical functions such as Bessel and Kelvin functions, as well as characteristics of matrices and determinants required for designing plates and shells. Suitable as either a working reference or an upper-level academic text, Design for Thermal Stresses gives students and professional engineers the information they need to meet today's thermal stress design challenges.

Design for Thermal Stresses

Design for Thermal Stresses PDF Author: Randall F. Barron
Publisher: John Wiley & Sons
ISBN: 1118094530
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
The tools engineers need for effective thermal stress design Thermal stress concerns arise in many engineering situations, from aerospace structures to nuclear fuel rods to concrete highway slabs on a hot summer day. Having the tools to understand and alleviate these potential stresses is key for engineers in effectively executing a wide range of modern design tasks. Design for Thermal Stresses provides an accessible and balanced resource geared towards real-world applications. Presenting both the analysis and synthesis needed for accurate design, the book emphasizes key principles, techniques, and approaches for solving thermal stress problems. Moving from basic to advanced topics, chapters cover: Bars, beams, and trusses from a "strength of materials" perspective Plates, shells, and thick-walled vessels from a "theory of elasticity" perspective Thermal buckling in columns, beams, plates, and shells Written for students and working engineers, this book features numerous sample problems demonstrating concepts at work. In addition, appendices include important SI units, relevant material properties, and mathematical functions such as Bessel and Kelvin functions, as well as characteristics of matrices and determinants required for designing plates and shells. Suitable as either a working reference or an upper-level academic text, Design for Thermal Stresses gives students and professional engineers the information they need to meet today's thermal stress design challenges.

Thermal Stresses -- Advanced Theory and Applications

Thermal Stresses -- Advanced Theory and Applications PDF Author: Richard B. Hetnarski
Publisher: Springer Science & Business Media
ISBN: 1402092474
Category : Technology & Engineering
Languages : en
Pages : 579

Get Book Here

Book Description
The authors are pleased to present Thermal Stresses – Advanced Theory and Applications. This book will serve a wide range of readers, in particular, gr- uate students, PhD candidates, professors, scientists, researchers in various industrial and government institutes, and engineers. Thus, the book should be considered not only as a graduate textbook, but also as a reference handbook to those working or interested in areas of Applied Mathematics, Continuum Mechanics, Stress Analysis, and Mechanical Design. In addition, the book p- vides extensive coverage of great many theoretical problems and numerous references to the literature. The ?eld of Thermal Stresses lies at the crossroads of Stress Analysis, T- ory of Elasticity, Thermodynamics, Heat Conduction Theory, and advanced methods of Applied Mathematics. Each of these areas is covered to the extend it is necessary. Therefore, the book is self-contained, so that the reader should not need to consult other sources while studying the topic. The book starts from basic concepts and principles, and these are developed to more advanced levels as the text progresses. Nevertheless, some basic preparation on the part of the reader in Classical Mechanics, Stress Analysis, and Mathematics, - cluding Vector and Cartesian Tensor Analysis is expected. While selecting material for the book, the authors made every e?ort to present both classical topics and methods, and modern, or more recent, dev- opments in the ?eld. The book comprises ten chapters.

Thermal Stresses and Temperature Control of Mass Concrete

Thermal Stresses and Temperature Control of Mass Concrete PDF Author: Zhu Bofang
Publisher: Butterworth-Heinemann
ISBN: 0124078540
Category : Technology & Engineering
Languages : en
Pages : 525

Get Book Here

Book Description
Methods of controlling mass concrete temperatures range from relatively simple to complex and from inexpensive too costly. Depending on a particular situation, it may be advantageous to use one or more methods over others. Based on the author's 50 years of personal experience in designing mass concrete structures, Thermal Stresses and Temperature Control of Mass Concrete provides a clear and rigorous guide to selecting the right techniques to meet project-specific and financial needs. New techniques such as long time superficial thermal insulation, comprehensive temperature control, and MgO self-expansive concrete are introduced. - Methods for calculating the temperature field and thermal stresses in dams, docks, tunnels, and concrete blocks and beams on elastic foundations - Thermal stress computations that take into account the influences of all factors and simulate the process of construction - Analytical methods for determining thermal and mechanical properties of concrete - Formulas for determining water temperature in reservoirs and temperature loading of arched dams - New numerical monitoring methods for mass and semi-mature aged concrete

Thermal Stress Resistance of Materials

Thermal Stress Resistance of Materials PDF Author: Anatoly Lanin
Publisher: Springer Science & Business Media
ISBN: 3540714006
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book Here

Book Description
This brilliant treatise is based on extensive experimental and technological data derived from high-temperature materials development processes. The distinguished authors analyse results from the development of nuclear reactors and aerospace rocket engines. They apply this data to the problem of bearing capacity and the fracture of thermally loaded bodies. They establish new regularities of fracture at various modes of local and combined thermal loading.

Thermal Stresses—Advanced Theory and Applications

Thermal Stresses—Advanced Theory and Applications PDF Author: Richard B. Hetnarski
Publisher: Springer
ISBN: 3030104362
Category : Science
Languages : en
Pages : 657

Get Book Here

Book Description
This is an advanced modern textbook on thermal stresses. It serves a wide range of readers, in particular, graduate and postgraduate students, scientists, researchers in various industrial and government institutes, and engineers working in mechanical, civil, and aerospace engineering. This volume covers diverse areas of applied mathematics, continuum mechanics, stress analysis, and mechanical design. This work treats a number of topics not presented in other books on thermal stresses, for example: theory of coupled and generalized thermoelasticity, finite and boundary element method in generalized thermoelasticity, thermal stresses in functionally graded structures, and thermal expansions of piping systems. The book starts from basic concepts and principles, and these are developed to more advanced levels as the text progresses. Nevertheless, some basic knowledge on the part of the reader is expected in classical mechanics, stress analysis, and mathematics, including vector and cartesian tensor analysis. This 2nd enhanced edition includes a new chapter on Thermally Induced Vibrations. The method of stiffness is added to Chapter 7. The variational principle for the Green-Lindsay and Green-Naghdi models have been added to Chapter 2 and equations of motion and compatibility equations in spherical coordinates to Chapter 3. Additional problems at the end of chapters were added.

Thermal Stress and Strain in Microelectronics Packaging

Thermal Stress and Strain in Microelectronics Packaging PDF Author: John Lau
Publisher: Springer Science & Business Media
ISBN: 1468477676
Category : Technology & Engineering
Languages : en
Pages : 904

Get Book Here

Book Description
Microelectronics packaging and interconnection have experienced exciting growth stimulated by the recognition that systems, not just silicon, provide the solution to evolving applications. In order to have a high density/ performance/yield/quality/reliability, low cost, and light weight system, a more precise understanding of the system behavior is required. Mechanical and thermal phenomena are among the least understood and most complex of the many phenomena encountered in microelectronics packaging systems and are found on the critical path of neatly every design and process in the electronics industry. The last decade has witnessed an explosive growth in the research and development efforts devoted to determining the mechanical and thermal behaviors of microelectronics packaging. With the advance of very large scale integration technologies, thousands to tens of thousands of devices can be fabricated on a silicon chip. At the same time, demands to further reduce packaging signal delay and increase packaging density between communicat ing circuits have led to the use of very high power dissipation single-chip modules and multi-chip modules. The result of these developments has been a rapid growth in module level heat flux within the personal, workstation, midrange, mainframe, and super computers. Thus, thermal (temperature, stress, and strain) management is vital for microelectronics packaging designs and analyses. How to determine the temperature distribution in the elec tronics components and systems is outside the scope of this book, which focuses on the determination of stress and strain distributions in the electronics packaging.

Theory of Thermal Stresses

Theory of Thermal Stresses PDF Author: Bruno A. Boley
Publisher: Courier Corporation
ISBN: 0486143864
Category : Technology & Engineering
Languages : en
Pages : 610

Get Book Here

Book Description
Highly regarded text presents detailed discussion of fundamental aspects of theory, background, problems with detailed solutions. Basics of thermoelasticity, heat transfer theory, thermal stress analysis, more. 1985 edition.

Process Piping

Process Piping PDF Author: C. Becht
Publisher: American Society of Mechanical Engineers
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 322

Get Book Here

Book Description
Provides background information, historical perspective, and expert commentary on the ASME B31.3 Code requirements for process piping design and construction. It provides the most complete coverage of the Code that is available today and is packed with additional information useful to those responsible for the design and mechanical integrity of process piping.

Theory of Elasticity and Thermal Stresses

Theory of Elasticity and Thermal Stresses PDF Author: M. Reza Eslami
Publisher: Springer Science & Business Media
ISBN: 9400763565
Category : Science
Languages : en
Pages : 787

Get Book Here

Book Description
This book contains the elements of the theory and the problems of Elasticity and Thermal Stresses with full solutions. The emphasis is placed on problems and solutions and the book consists of four parts: one part is on The Mathematical Theory of Elasticity, two parts are on Thermal Stresses and one part is on Numerical Methods. The book is addressed to higher level undergraduate students, graduate students and engineers and it is an indispensable companion to all who study any of the books published earlier by the authors. This book links the three previously published books by the authors into one comprehensive entity.

Thermal Stress Analysis of Composite Beams, Plates and Shells

Thermal Stress Analysis of Composite Beams, Plates and Shells PDF Author: Erasmo Carrera
Publisher: Academic Press
ISBN: 0124200931
Category : Technology & Engineering
Languages : en
Pages : 442

Get Book Here

Book Description
Thermal Stress Analysis of Composite Beams, Plates and Shells: Computational Modelling and Applications presents classic and advanced thermal stress topics in a cutting-edge review of this critical area, tackling subjects that have little coverage in existing resources. It includes discussions of complex problems, such as multi-layered cases using modern advanced computational and vibrational methods. Authors Carrera and Fazzolari begin with a review of the fundamentals of thermoelasticity and thermal stress analysis relating to advanced structures and the basic mechanics of beams, plates, and shells, making the book a self-contained reference. More challenging topics are then addressed, including anisotropic thermal stress structures, static and dynamic responses of coupled and uncoupled thermoelastic problems, thermal buckling, and post-buckling behavior of thermally loaded structures, and thermal effects on panel flutter phenomena, amongst others. - Provides an overview of critical thermal stress theory and its relation to beams, plates, and shells, from classical concepts to the latest advanced theories - Appeals to those studying thermoelasticity, thermoelastics, stress analysis, multilayered structures, computational methods, buckling, static response, and dynamic response - Includes the authors' unified formulation (UF) theory, along with cutting-edge topics that receive little coverage in other references - Covers metallic and composite structures, including a complete analysis and sample problems of layered structures, considering both mesh and meshless methods - Presents a valuable resource for those working on thermal stress problems in mechanical, civil, and aerospace engineering settings