Author: Alfred Kwok-Kit Wong
Publisher: SPIE Press
ISBN: 9780819439956
Category : Science
Languages : en
Pages : 238
Book Description
Ever-smaller IC devices are pushing the optical lithography envelope, increasing the importance of resolution enhancement techniques. This tutorial encompasses two decades of research. It discusses theoretical and practical aspects of commonly used techniques, including optical imaging and resolution, modified illumination, optical proximity correction, alternating and attenuating phase-shifting masks, selecting RETs, and second-generation RETs. Useful for students and practicing lithographers
Resolution Enhancement Techniques in Optical Lithography
Author: Alfred Kwok-Kit Wong
Publisher: SPIE Press
ISBN: 9780819439956
Category : Science
Languages : en
Pages : 238
Book Description
Ever-smaller IC devices are pushing the optical lithography envelope, increasing the importance of resolution enhancement techniques. This tutorial encompasses two decades of research. It discusses theoretical and practical aspects of commonly used techniques, including optical imaging and resolution, modified illumination, optical proximity correction, alternating and attenuating phase-shifting masks, selecting RETs, and second-generation RETs. Useful for students and practicing lithographers
Publisher: SPIE Press
ISBN: 9780819439956
Category : Science
Languages : en
Pages : 238
Book Description
Ever-smaller IC devices are pushing the optical lithography envelope, increasing the importance of resolution enhancement techniques. This tutorial encompasses two decades of research. It discusses theoretical and practical aspects of commonly used techniques, including optical imaging and resolution, modified illumination, optical proximity correction, alternating and attenuating phase-shifting masks, selecting RETs, and second-generation RETs. Useful for students and practicing lithographers
Selected Papers on Resolution Enhancement Techniques in Optical Lithography
Author: F. M. Schellenberg
Publisher: SPIE-International Society for Optical Engineering
ISBN:
Category : Integrated circuits
Languages : en
Pages : 910
Book Description
Optical lithography for integrated circuits is undergoing a renaissance with the adoption of Resolution Enhancement Technology (RET). Some RET concepts have become routine in manufacturing. This volume gathers together seminal RET papers.
Publisher: SPIE-International Society for Optical Engineering
ISBN:
Category : Integrated circuits
Languages : en
Pages : 910
Book Description
Optical lithography for integrated circuits is undergoing a renaissance with the adoption of Resolution Enhancement Technology (RET). Some RET concepts have become routine in manufacturing. This volume gathers together seminal RET papers.
Optical and EUV Lithography
Author: Andreas Erdmann
Publisher:
ISBN: 9781510639010
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781510639010
Category :
Languages : en
Pages :
Book Description
Silicon Materials Science and Technology X
Author: Howard R. Huff
Publisher: The Electrochemical Society
ISBN: 156677439X
Category : Semiconductors
Languages : en
Pages : 599
Book Description
This was the tenth symposium of the International Symposium on Silcon Material Science and Technology, going back to 1969. This issue provides a unique historical record of the program and will aid in the understanding of silicon materials over the last 35 years.
Publisher: The Electrochemical Society
ISBN: 156677439X
Category : Semiconductors
Languages : en
Pages : 599
Book Description
This was the tenth symposium of the International Symposium on Silcon Material Science and Technology, going back to 1969. This issue provides a unique historical record of the program and will aid in the understanding of silicon materials over the last 35 years.
Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques
Author: Wynand Lambrechts
Publisher: CRC Press
ISBN: 1351248650
Category : Computers
Languages : en
Pages : 345
Book Description
This book provides a methodological understanding of the theoretical and technical limitations to the longevity of Moore’s law. The book presents research on factors that have significant impact on the future of Moore’s law and those factors believed to sustain the trend of the last five decades. Research findings show that boundaries of Moore’s law primarily include physical restrictions of scaling electronic components to levels beyond that of ordinary manufacturing principles and approaching the bounds of physics. The research presented in this book provides essential background and knowledge to grasp the following principles: Traditional and modern photolithography, the primary limiting factor of Moore’s law Innovations in semiconductor manufacturing that makes current generation CMOS processing possible Multi-disciplinary technologies that could drive Moore's law forward significantly Design principles for microelectronic circuits and components that take advantage of technology miniaturization The semiconductor industry economic market trends and technical driving factors The complexity and cost associated with technology scaling have compelled researchers in the disciplines of engineering and physics to optimize previous generation nodes to improve system-on-chip performance. This is especially relevant to participate in the increased attractiveness of the Internet of Things (IoT). This book additionally provides scholarly and practical examples of principles in microelectronic circuit design and layout to mitigate technology limits of previous generation nodes. Readers are encouraged to intellectually apply the knowledge derived from this book to further research and innovation in prolonging Moore’s law and associated principles.
Publisher: CRC Press
ISBN: 1351248650
Category : Computers
Languages : en
Pages : 345
Book Description
This book provides a methodological understanding of the theoretical and technical limitations to the longevity of Moore’s law. The book presents research on factors that have significant impact on the future of Moore’s law and those factors believed to sustain the trend of the last five decades. Research findings show that boundaries of Moore’s law primarily include physical restrictions of scaling electronic components to levels beyond that of ordinary manufacturing principles and approaching the bounds of physics. The research presented in this book provides essential background and knowledge to grasp the following principles: Traditional and modern photolithography, the primary limiting factor of Moore’s law Innovations in semiconductor manufacturing that makes current generation CMOS processing possible Multi-disciplinary technologies that could drive Moore's law forward significantly Design principles for microelectronic circuits and components that take advantage of technology miniaturization The semiconductor industry economic market trends and technical driving factors The complexity and cost associated with technology scaling have compelled researchers in the disciplines of engineering and physics to optimize previous generation nodes to improve system-on-chip performance. This is especially relevant to participate in the increased attractiveness of the Internet of Things (IoT). This book additionally provides scholarly and practical examples of principles in microelectronic circuit design and layout to mitigate technology limits of previous generation nodes. Readers are encouraged to intellectually apply the knowledge derived from this book to further research and innovation in prolonging Moore’s law and associated principles.
Computational Lithography
Author: Xu Ma
Publisher: John Wiley & Sons
ISBN: 111804357X
Category : Technology & Engineering
Languages : en
Pages : 225
Book Description
A Unified Summary of the Models and Optimization Methods Used in Computational Lithography Optical lithography is one of the most challenging areas of current integrated circuit manufacturing technology. The semiconductor industry is relying more on resolution enhancement techniques (RETs), since their implementation does not require significant changes in fabrication infrastructure. Computational Lithography is the first book to address the computational optimization of RETs in optical lithography, providing an in-depth discussion of optimal optical proximity correction (OPC), phase shifting mask (PSM), and off-axis illumination (OAI) RET tools that use model-based mathematical optimization approaches. The book starts with an introduction to optical lithography systems, electric magnetic field principles, and the fundamentals of optimization from a mathematical point of view. It goes on to describe in detail different types of optimization algorithms to implement RETs. Most of the algorithms developed are based on the application of the OPC, PSM, and OAI approaches and their combinations. Algorithms for coherent illumination as well as partially coherent illumination systems are described, and numerous simulations are offered to illustrate the effectiveness of the algorithms. In addition, mathematical derivations of all optimization frameworks are presented. The accompanying MATLAB® software files for all the RET methods described in the book make it easy for readers to run and investigate the codes in order to understand and apply the optimization algorithms, as well as to design a set of optimal lithography masks. The codes may also be used by readers for their research and development activities in their academic or industrial organizations. An accompanying MATLAB® software guide is also included. An accompanying MATLAB® software guide is included, and readers can download the software to use with the guide at ftp://ftp.wiley.com/public/sci_tech_med/computational_lithography. Tailored for both entry-level and experienced readers, Computational Lithography is meant for faculty, graduate students, and researchers, as well as scientists and engineers in industrial organizations whose research or career field is semiconductor IC fabrication, optical lithography, and RETs. Computational lithography draws from the rich theory of inverse problems, optics, optimization, and computational imaging; as such, the book is also directed to researchers and practitioners in these fields.
Publisher: John Wiley & Sons
ISBN: 111804357X
Category : Technology & Engineering
Languages : en
Pages : 225
Book Description
A Unified Summary of the Models and Optimization Methods Used in Computational Lithography Optical lithography is one of the most challenging areas of current integrated circuit manufacturing technology. The semiconductor industry is relying more on resolution enhancement techniques (RETs), since their implementation does not require significant changes in fabrication infrastructure. Computational Lithography is the first book to address the computational optimization of RETs in optical lithography, providing an in-depth discussion of optimal optical proximity correction (OPC), phase shifting mask (PSM), and off-axis illumination (OAI) RET tools that use model-based mathematical optimization approaches. The book starts with an introduction to optical lithography systems, electric magnetic field principles, and the fundamentals of optimization from a mathematical point of view. It goes on to describe in detail different types of optimization algorithms to implement RETs. Most of the algorithms developed are based on the application of the OPC, PSM, and OAI approaches and their combinations. Algorithms for coherent illumination as well as partially coherent illumination systems are described, and numerous simulations are offered to illustrate the effectiveness of the algorithms. In addition, mathematical derivations of all optimization frameworks are presented. The accompanying MATLAB® software files for all the RET methods described in the book make it easy for readers to run and investigate the codes in order to understand and apply the optimization algorithms, as well as to design a set of optimal lithography masks. The codes may also be used by readers for their research and development activities in their academic or industrial organizations. An accompanying MATLAB® software guide is also included. An accompanying MATLAB® software guide is included, and readers can download the software to use with the guide at ftp://ftp.wiley.com/public/sci_tech_med/computational_lithography. Tailored for both entry-level and experienced readers, Computational Lithography is meant for faculty, graduate students, and researchers, as well as scientists and engineers in industrial organizations whose research or career field is semiconductor IC fabrication, optical lithography, and RETs. Computational lithography draws from the rich theory of inverse problems, optics, optimization, and computational imaging; as such, the book is also directed to researchers and practitioners in these fields.
Materials Issues and Modeling for Device Nanofabrication: Volume 584
Author: Lhadi Merhari
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.
Vacuum Ultraviolet Spectroscopy
Author: James A. Samson
Publisher: Academic Press
ISBN: 0080543480
Category : Science
Languages : en
Pages : 317
Book Description
Techniques of Vacuum Ultraviolet Spectroscopy was first published in 1967. In the three decades since, the techniques associated with vacuum ultraviolet spectroscopy have been greatly expanded. Originally published as two volumes in the serial "Experimental Methods in the Physical Sciences," Vacuum Ultraviolet Spectroscopy combines in one paperback volume information on the many advances in vacuum ultraviolet (VUV) research. In addition, the book provides students and researchers with concise reviews of the important aspects of designing experiments in the VUV region.This is the only comprehensive treatise describing the use of synchrotron and other light sources for research, along with the new technologies in optical elements, multilayers, mirror coatings, soft x-ray zone plates, VUV detectors, interferometric spectrometers, and subjects such as spectromicroscopy, lithography, and photon-induced fluorescence. Vacuum Ultraviolet Spectroscopy is an ideal handbook both for the beginner and for the experienced researcher in any field requiring the use of VUV radiation. Key Features* Detailed review of synchrotron radiation sources including undulators and wigglers* Comprehensive outline of monochromator design* Concise review of optics theory for multilayers, spectrometers, and zone plates* Information about other important VUV sources such as laser produced plasmas and Electron Beam Ion Trap (EBIT) sources* Applications such as spectromicroscopy, lithography, and fluorescence
Publisher: Academic Press
ISBN: 0080543480
Category : Science
Languages : en
Pages : 317
Book Description
Techniques of Vacuum Ultraviolet Spectroscopy was first published in 1967. In the three decades since, the techniques associated with vacuum ultraviolet spectroscopy have been greatly expanded. Originally published as two volumes in the serial "Experimental Methods in the Physical Sciences," Vacuum Ultraviolet Spectroscopy combines in one paperback volume information on the many advances in vacuum ultraviolet (VUV) research. In addition, the book provides students and researchers with concise reviews of the important aspects of designing experiments in the VUV region.This is the only comprehensive treatise describing the use of synchrotron and other light sources for research, along with the new technologies in optical elements, multilayers, mirror coatings, soft x-ray zone plates, VUV detectors, interferometric spectrometers, and subjects such as spectromicroscopy, lithography, and photon-induced fluorescence. Vacuum Ultraviolet Spectroscopy is an ideal handbook both for the beginner and for the experienced researcher in any field requiring the use of VUV radiation. Key Features* Detailed review of synchrotron radiation sources including undulators and wigglers* Comprehensive outline of monochromator design* Concise review of optics theory for multilayers, spectrometers, and zone plates* Information about other important VUV sources such as laser produced plasmas and Electron Beam Ion Trap (EBIT) sources* Applications such as spectromicroscopy, lithography, and fluorescence
Fundamental Principles of Optical Lithography
Author: Chris Mack
Publisher: John Wiley & Sons
ISBN: 1119965071
Category : Technology & Engineering
Languages : en
Pages : 503
Book Description
The fabrication of an integrated circuit requires a variety of physical and chemical processes to be performed on a semiconductor substrate. In general, these processes fall into three categories: film deposition, patterning, and semiconductor doping. Films of both conductors and insulators are used to connect and isolate transistors and their components. By creating structures of these various components millions of transistors can be built and wired together to form the complex circuitry of modern microelectronic devices. Fundamental to all of these processes is lithography, ie, the formation of three-dimensional relief images on the substrate for subsequent transfer of the pattern to the substrate. This book presents a complete theoretical and practical treatment of the topic of lithography for both students and researchers. It comprises ten detailed chapters plus three appendices with problems provided at the end of each chapter. Additional Information: Visiting http://www.lithoguru.com/textbook/index.html enhances the reader's understanding as the website supplies information on how you can download a free laboratory manual, Optical Lithography Modelling with MATLAB®, to accompany the textbook. You can also contact the author and find help for instructors.
Publisher: John Wiley & Sons
ISBN: 1119965071
Category : Technology & Engineering
Languages : en
Pages : 503
Book Description
The fabrication of an integrated circuit requires a variety of physical and chemical processes to be performed on a semiconductor substrate. In general, these processes fall into three categories: film deposition, patterning, and semiconductor doping. Films of both conductors and insulators are used to connect and isolate transistors and their components. By creating structures of these various components millions of transistors can be built and wired together to form the complex circuitry of modern microelectronic devices. Fundamental to all of these processes is lithography, ie, the formation of three-dimensional relief images on the substrate for subsequent transfer of the pattern to the substrate. This book presents a complete theoretical and practical treatment of the topic of lithography for both students and researchers. It comprises ten detailed chapters plus three appendices with problems provided at the end of each chapter. Additional Information: Visiting http://www.lithoguru.com/textbook/index.html enhances the reader's understanding as the website supplies information on how you can download a free laboratory manual, Optical Lithography Modelling with MATLAB®, to accompany the textbook. You can also contact the author and find help for instructors.
Functional Polymers
Author: Raja Shunmugam
Publisher: CRC Press
ISBN: 1315342316
Category : Science
Languages : en
Pages : 327
Book Description
This new book covers the synthetic as well application aspects of functional polymers. It highlights modern trends in the field and showcases the recent characterization techniques that are being employed in the field of polymer science. The chapters are written by top-notch scientists who are internationally recognized in the field. The chapters will highlight the modern trend in the field.
Publisher: CRC Press
ISBN: 1315342316
Category : Science
Languages : en
Pages : 327
Book Description
This new book covers the synthetic as well application aspects of functional polymers. It highlights modern trends in the field and showcases the recent characterization techniques that are being employed in the field of polymer science. The chapters are written by top-notch scientists who are internationally recognized in the field. The chapters will highlight the modern trend in the field.