Differentiation and Integration

Differentiation and Integration PDF Author: W. Bolton
Publisher: Routledge
ISBN: 1134964412
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
This book is concerned with the principles of differentiation and integration. The principles are then applied to solve engineering problems. A familiarity with basic algebra and a basic knowledge of common functions, such as polynomials, trigonometric, exponential, logarithmic and hyperbolic is assumed but reference material on these is included in an appendix.

Differentiation and Integration

Differentiation and Integration PDF Author: W. Bolton
Publisher: Routledge
ISBN: 1134964412
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
This book is concerned with the principles of differentiation and integration. The principles are then applied to solve engineering problems. A familiarity with basic algebra and a basic knowledge of common functions, such as polynomials, trigonometric, exponential, logarithmic and hyperbolic is assumed but reference material on these is included in an appendix.

Derivation and Integration

Derivation and Integration PDF Author: Washek F. Pfeffer
Publisher: Cambridge University Press
ISBN: 9780521792684
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This 2001 book is devoted to an invariant multidimensional process of recovering a function from its derivative. It considers additive functions defined on the family of all bounded BV sets that are continuous with respect to a suitable topology. A typical example is the flux of a continuous vector field. A very general Gauss-Green theorem follows from the sufficient conditions for the derivability of the flux. Since the setting is invariant with respect to local lipeomorphisms, a standard argument extends the Gauss-Green theorem to the Stokes theorem on Lipschitz manifolds. In addition, the author proves the Stokes theorem for a class of top-dimensional normal currents - a first step towards solving a difficult open problem of derivation and integration in middle dimensions. The book contains complete and detailed proofs and will provide valuable information to research mathematicians and advanced graduate students interested in geometric integration and related areas.

Calculus Reordered

Calculus Reordered PDF Author: David M. Bressoud
Publisher: Princeton University Press
ISBN: 0691218781
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
Calculus Reordered takes readers on a remarkable journey through hundreds of years to tell the story of how calculus grew to what we know today. David Bressoud explains why calculus is credited to Isaac Newton and Gottfried Leibniz in the seventeenth century, and how its current structure is based on developments that arose in the nineteenth century. Bressoud argues that a pedagogy informed by the historical development of calculus presents a sounder way for students to learn this fascinating area of mathematics. Delving into calculus's birth in the Hellenistic Eastern Mediterranean--especially Syracuse in Sicily and Alexandria in Egypt--as well as India and the Islamic Middle East, Bressoud considers how calculus developed in response to essential questions emerging from engineering and astronomy. He looks at how Newton and Leibniz built their work on a flurry of activity that occurred throughout Europe, and how Italian philosophers such as Galileo Galilei played a particularly important role. In describing calculus's evolution, Bressoud reveals problems with the standard ordering of its curriculum: limits, differentiation, integration, and series. He contends instead that the historical order--which follows first integration as accumulation, then differentiation as ratios of change, series as sequences of partial sums, and finally limits as they arise from the algebra of inequalities--makes more sense in the classroom environment. Exploring the motivations behind calculus's discovery, Calculus Reordered highlights how this essential tool of mathematics came to be.

Symbolic Integration I

Symbolic Integration I PDF Author: Manuel Bronstein
Publisher: Springer Science & Business Media
ISBN: 3662033860
Category : Mathematics
Languages : en
Pages : 311

Get Book Here

Book Description
This first volume in the series "Algorithms and Computation in Mathematics", is destined to become the standard reference work in the field. Manuel Bronstein is the number-one expert on this topic and his book is the first to treat the subject both comprehensively and in sufficient detail - incorporating new results along the way. The book addresses mathematicians and computer scientists interested in symbolic computation, developers and programmers of computer algebra systems as well as users of symbolic integration methods. Many algorithms are given in pseudocode ready for immediate implementation, making the book equally suitable as a textbook for lecture courses on symbolic integration.

Foundations of Differential Calculus

Foundations of Differential Calculus PDF Author: Euler
Publisher: Springer Science & Business Media
ISBN: 0387226451
Category : Mathematics
Languages : en
Pages : 208

Get Book Here

Book Description
The positive response to the publication of Blanton's English translations of Euler's "Introduction to Analysis of the Infinite" confirmed the relevance of this 240 year old work and encouraged Blanton to translate Euler's "Foundations of Differential Calculus" as well. The current book constitutes just the first 9 out of 27 chapters. The remaining chapters will be published at a later time. With this new translation, Euler's thoughts will not only be more accessible but more widely enjoyed by the mathematical community.

Mathematical Methods for Finance

Mathematical Methods for Finance PDF Author: Sergio M. Focardi
Publisher: John Wiley & Sons
ISBN: 1118312635
Category : Business & Economics
Languages : en
Pages : 325

Get Book Here

Book Description
The mathematical and statistical tools needed in the rapidly growing quantitative finance field With the rapid growth in quantitative finance, practitioners must achieve a high level of proficiency in math and statistics. Mathematical Methods and Statistical Tools for Finance, part of the Frank J. Fabozzi Series, has been created with this in mind. Designed to provide the tools needed to apply finance theory to real world financial markets, this book offers a wealth of insights and guidance in practical applications. It contains applications that are broader in scope from what is covered in a typical book on mathematical techniques. Most books focus almost exclusively on derivatives pricing, the applications in this book cover not only derivatives and asset pricing but also risk management—including credit risk management—and portfolio management. Includes an overview of the essential math and statistical skills required to succeed in quantitative finance Offers the basic mathematical concepts that apply to the field of quantitative finance, from sets and distances to functions and variables The book also includes information on calculus, matrix algebra, differential equations, stochastic integrals, and much more Written by Sergio Focardi, one of the world's leading authors in high-level finance Drawing on the author's perspectives as a practitioner and academic, each chapter of this book offers a solid foundation in the mathematical tools and techniques need to succeed in today's dynamic world of finance.

Differentiation and Integration

Differentiation and Integration PDF Author: Hugh Ansfrid Thurston
Publisher: London : Blackie
ISBN:
Category : Mathematics
Languages : en
Pages : 168

Get Book Here

Book Description


Measure, Integral, Derivative

Measure, Integral, Derivative PDF Author: Sergei Ovchinnikov
Publisher: Springer Science & Business Media
ISBN: 1461471966
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
This classroom-tested text is intended for a one-semester course in Lebesgue’s theory. With over 180 exercises, the text takes an elementary approach, making it easily accessible to both upper-undergraduate- and lower-graduate-level students. The three main topics presented are measure, integration, and differentiation, and the only prerequisite is a course in elementary real analysis. In order to keep the book self-contained, an introductory chapter is included with the intent to fill the gap between what the student may have learned before and what is required to fully understand the consequent text. Proofs of difficult results, such as the differentiability property of functions of bounded variations, are dissected into small steps in order to be accessible to students. With the exception of a few simple statements, all results are proven in the text. The presentation is elementary, where σ-algebras are not used in the text on measure theory and Dini’s derivatives are not used in the chapter on differentiation. However, all the main results of Lebesgue’s theory are found in the book. http://online.sfsu.edu/sergei/MID.htm

Calculus Volume 3

Calculus Volume 3 PDF Author: Edwin Herman
Publisher:
ISBN: 9781947172838
Category : Calculus
Languages : en
Pages : 0

Get Book Here

Book Description
Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 3 covers parametric equations and polar coordinates, vectors, functions of several variables, multiple integration, and second-order differential equations.

How Not to Be Wrong

How Not to Be Wrong PDF Author: Jordan Ellenberg
Publisher: Penguin Press
ISBN: 1594205221
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.