Density Waves In Solids

Density Waves In Solids PDF Author: George Gruner
Publisher: CRC Press
ISBN: 0429969562
Category : Science
Languages : en
Pages : 284

Get Book Here

Book Description
?Density Waves in Solids is written for graduate students and scientists interested in solid-state sciences. It discusses the theoretical and experimental state of affairs of two novel types of broken symmetry ground states of metals, charge, and spin density waves. These states arise as the consequence of electron-phonon and electron-electron interactions in low-dimensional metals.Some fundamental aspects of the one-dimensional electron gas, and of the materials with anisotropic properties, are discussed first. This is followed by the mean field theory of the phases transitions?discussed using second quantized formalism?together with the various experimental observations on the transition and on the ground states. Fluctuation effects and the collective excitations are reviewed next, using the Ginzburg-Landau formalism, followed by the review of the interaction of these states with the underlying lattice and with impurities. The final chapters are devoted to the response of the ground states to external perturbations.

Density Waves In Solids

Density Waves In Solids PDF Author: George Gruner
Publisher: CRC Press
ISBN: 0429969562
Category : Science
Languages : en
Pages : 284

Get Book Here

Book Description
?Density Waves in Solids is written for graduate students and scientists interested in solid-state sciences. It discusses the theoretical and experimental state of affairs of two novel types of broken symmetry ground states of metals, charge, and spin density waves. These states arise as the consequence of electron-phonon and electron-electron interactions in low-dimensional metals.Some fundamental aspects of the one-dimensional electron gas, and of the materials with anisotropic properties, are discussed first. This is followed by the mean field theory of the phases transitions?discussed using second quantized formalism?together with the various experimental observations on the transition and on the ground states. Fluctuation effects and the collective excitations are reviewed next, using the Ginzburg-Landau formalism, followed by the review of the interaction of these states with the underlying lattice and with impurities. The final chapters are devoted to the response of the ground states to external perturbations.

Charge Density Waves in Solids

Charge Density Waves in Solids PDF Author: Gyula Hutiray
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 572

Get Book Here

Book Description


On the Nature of Charge Density Waves, Superconductivity and Their Interplay in 1T-TiSe2

On the Nature of Charge Density Waves, Superconductivity and Their Interplay in 1T-TiSe2 PDF Author: Chuan Chen
Publisher: Springer Nature
ISBN: 3030298256
Category : Technology & Engineering
Languages : en
Pages : 114

Get Book Here

Book Description
This thesis presents analytical theoretical studies on the interplay between charge density waves (CDW) and superconductivity (SC) in the actively studied transition-metal dichalcogenide 1T-TiSe2. It begins by reapproaching a years-long debate over the nature of the phase transition to the commensurate CDW (CCDW) state and the role played by the intrinsic tendency towards excitonic condensation in this system. A Ginzburg-Landau phenomenological theory was subsequently developed to understand the experimentally observed transition from commensurate to incommensurate CDW (ICDW) order with doping or pressure, and the emergence of a superconducting dome that coexists with ICDW. Finally, to characterize microscopically the effects of the interplay between CDW and SC, the spectrum of CDW fluctuations beyond mean-field was studied in detail. In the aggregate, the work reported here provides an encompassing understanding of what are possibly key microscopic underpinnings of the CDW and SC physics in TiSe2.

Electrodynamics of Solids

Electrodynamics of Solids PDF Author: Martin Dressel
Publisher: Cambridge University Press
ISBN: 9780521597265
Category : Science
Languages : en
Pages : 490

Get Book Here

Book Description
The authors of this book present a thorough discussion of the optical properties of solids, with a focus on electron states and their response to electrodynamic fields. A review of the fundamental aspects of the propagation of electromagnetic fields, and their interaction with condensed matter, is given. This is followed by a discussion of the optical properties of metals, semiconductors, and collective states of solids such as superconductors. Theoretical concepts, measurement techniques and experimental results are covered in three interrelated sections. Well-established, mature fields are discussed (for example, classical metals and semiconductors) together with modern topics at the focus of current interest. The substantial reference list included will also prove to be a valuable resource for those interested in the electronic properties of solids. The book is intended for use by advanced undergraduate and graduate students, and researchers active in the fields of condensed matter physics, materials science and optical engineering.

Topics in the Theory of Solid Materials

Topics in the Theory of Solid Materials PDF Author: J.M. Vail
Publisher: CRC Press
ISBN: 9780750307291
Category : Science
Languages : en
Pages : 386

Get Book Here

Book Description
Topics in the Theory of Solid Materials provides a clear and rigorous introduction to a wide selection of topics in solid materials, overlapping traditional courses in both condensed matter physics and materials science and engineering. It introduces both the continuum properties of matter, traditionally the realm of materials science courses, and the quantum mechanical properties that are usually more emphasized in solid state physics courses, and integrates them in a manner that will be of use to students of either subject. The book spans a range of basic and more advanced topics, including stress and strain, wave propagation, thermal properties, surface waves, polarons, phonons, point defects, magnetism, and charge density waves. Topics in the Theory of Solid Materials is eminently suitable for graduates and final-year undergraduates in physics, materials science, and engineering, as well as more advanced researchers in academia and industry studying solid materials.

DENSITY WAVES IN SOLIDS

DENSITY WAVES IN SOLIDS PDF Author: GEORGE. GRUNER
Publisher:
ISBN: 9780367091774
Category :
Languages : en
Pages : 288

Get Book Here

Book Description


Elastic Waves in Solids

Elastic Waves in Solids PDF Author: E. Dieulesaint
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 536

Get Book Here

Book Description


Fundamentals of the Physics of Solids

Fundamentals of the Physics of Solids PDF Author: Jenö Sólyom
Publisher: Springer Science & Business Media
ISBN: 3642045189
Category : Science
Languages : en
Pages : 764

Get Book Here

Book Description
This book is the third of a three-volume series written by the same author. It aims to deliver a comprehensive and self-contained account of the fundamentals of the physics of solids. In the presentation of the properties and experimentally observed phenomena together with the basic concepts and theoretical methods, it goes far beyond most classic texts. The essential features of various experimental techniques are also explained. This volume is devoted mostly to the discussion of the effects of electron—electron interaction beyond the one-electron approximation. The density-functional theory is introduced to account for correlation effects. The response to external perturbations is discussed in the framework of linear response theory. Landau’s Fermi-liquid theory is followed by the theory of Luttinger liquids. The subsequent chapters are devoted to electronic phases with broken symmetry: to itinerant magnetism, to spin- and charge-density waves and their realizations in quasi-one-dimensional materials, as well as to the microscopic theory of superconductivity. An overview is given of the physics of strongly correlated systems. The last chapter covers selected problems in the physics of disordered systems.

Solid State Physics

Solid State Physics PDF Author: Henry Ehrenreich
Publisher: Elsevier
ISBN: 0080458580
Category : Technology & Engineering
Languages : en
Pages : 325

Get Book Here

Book Description
The article by Fulde, Thalmeier and Zwicknagl traces many of the recent developments in the field of strongly correlated many electron systems. It is very useful both as a reference and a pedagogical exposition since it places these developments into a historical context beginning with early developments in the electron theory of solids. The second article in this volume, by Bréchet and Hutchinson, concerns pattern formation in metals and alloys. Spontaneous pattern formation is the development of a regularity, either in the spatial distribution of the material in a system or in its development in time, of a lower symmetry than that of its cause. These phenomena have been of considerable interest to the non-linear physics community, in particular in fluid dynamics and in chemical reactions.- Continuation of prestigious serial - Covers cutting edge research and topics in solid state physics- Studies strongly correlated electron systems and pattern formation in metal and alloys

Renormalization Group Theory

Renormalization Group Theory PDF Author: Ulrich Köbler
Publisher: Springer Science & Business Media
ISBN: 3642024882
Category : Technology & Engineering
Languages : en
Pages : 402

Get Book Here

Book Description
Spin wave theory of magnetism and BCS theory of superconductivity are typical theories of the time before renormalization group (RG) theory. The two theories consider atomistic interactions only and ignore the energy degrees of freedom of the continuous (infinite) solid. Since the pioneering work of Kenneth G. Wilson (Nobel Prize of physics in 1982) we know that the continuous solid is characterized by a particular symmetry: invariance with respect to transformations of the length scale. Associated with this symmetry are particular field particles with characteristic excitation spectra. In diamagnetic solids these are the well known Debye bosons. This book reviews experimental work on solid state physics of the last five decades and shows in a phenomenological way that the dynamics of ordered magnets and conventional superconductors is controlled by the field particles of the infinite solid and not by magnons and Cooper pairs, respectively. In the case of ordered magnets the relevant field particles are called GSW bosons after Goldstone, Salam and Weinberg and in the case of superconductors the relevant field particles are called SC bosons. One can imagine these bosons as magnetic density waves or charge density waves, respectively. Crossover from atomistic exchange interactions to the excitations of the infinite solid occurs because the GSW bosons have generally lower excitation energies than the atomistic magnons. According to the principle of relevance the dynamics is governed by the excitations with the lowest energy. The non relevant atomistic interactions with higher energy are practically unimportant for the dynamics.