Author: A. B. Pippard
Publisher: Cambridge University Press
ISBN: 0521326605
Category : Science
Languages : en
Pages : 270
Book Description
First published in 1989, this book contained the first systematic account of magnetoresistance in metals, the study of which has provided solid-state physicists with much valuable information about electron motion in metals. The electrical resistance of a metal is usually changed when a magnetic field is applied to it; at low temperatures the change may be very large indeed and when magnetic breakdown is involved, very complex. Every metal behaves differently, and the effect is highly dependent on the direction of the field relative to the crystal axes. Quite apart from its usefulness for determining the Ferni surfaces of individual metals, the phenomenon presents many interesting problems in its own right; it is the phenomenon, rather than its applications, that Professor Pippard concentrates on in this book. The level of treatment is aimed at readers with a basic knowledge of undergraduate solid-state physics, and makes no great demand on mathematical ability. The text is copiously illustrated with real experimental results.
Magnetoresistance in Metals
Author: A. B. Pippard
Publisher: Cambridge University Press
ISBN: 0521326605
Category : Science
Languages : en
Pages : 270
Book Description
First published in 1989, this book contained the first systematic account of magnetoresistance in metals, the study of which has provided solid-state physicists with much valuable information about electron motion in metals. The electrical resistance of a metal is usually changed when a magnetic field is applied to it; at low temperatures the change may be very large indeed and when magnetic breakdown is involved, very complex. Every metal behaves differently, and the effect is highly dependent on the direction of the field relative to the crystal axes. Quite apart from its usefulness for determining the Ferni surfaces of individual metals, the phenomenon presents many interesting problems in its own right; it is the phenomenon, rather than its applications, that Professor Pippard concentrates on in this book. The level of treatment is aimed at readers with a basic knowledge of undergraduate solid-state physics, and makes no great demand on mathematical ability. The text is copiously illustrated with real experimental results.
Publisher: Cambridge University Press
ISBN: 0521326605
Category : Science
Languages : en
Pages : 270
Book Description
First published in 1989, this book contained the first systematic account of magnetoresistance in metals, the study of which has provided solid-state physicists with much valuable information about electron motion in metals. The electrical resistance of a metal is usually changed when a magnetic field is applied to it; at low temperatures the change may be very large indeed and when magnetic breakdown is involved, very complex. Every metal behaves differently, and the effect is highly dependent on the direction of the field relative to the crystal axes. Quite apart from its usefulness for determining the Ferni surfaces of individual metals, the phenomenon presents many interesting problems in its own right; it is the phenomenon, rather than its applications, that Professor Pippard concentrates on in this book. The level of treatment is aimed at readers with a basic knowledge of undergraduate solid-state physics, and makes no great demand on mathematical ability. The text is copiously illustrated with real experimental results.
Electronic Properties Of Dirac And Weyl Semimetals
Author: Eduard V Gorbar
Publisher: World Scientific
ISBN: 9811207364
Category : Science
Languages : en
Pages : 535
Book Description
The monograph reviews various aspects of electronic properties of Dirac and Weyl semimetals. After a brief discussion of 2D Dirac semimetals, a comprehensive review of 3D materials is given. The description starts from an overview of the topological properties and symmetries of Dirac and Weyl semimetals. In addition, several low-energy models of Dirac and Weyl quasiparticles are presented. The key ab initio approaches and material realizations are given. The monograph includes detailed discussions of the surface Fermi arcs, anomalous transport properties, and collective modes of Dirac and Weyl semimetals. Superconductivity in these materials is briefly addressed.
Publisher: World Scientific
ISBN: 9811207364
Category : Science
Languages : en
Pages : 535
Book Description
The monograph reviews various aspects of electronic properties of Dirac and Weyl semimetals. After a brief discussion of 2D Dirac semimetals, a comprehensive review of 3D materials is given. The description starts from an overview of the topological properties and symmetries of Dirac and Weyl semimetals. In addition, several low-energy models of Dirac and Weyl quasiparticles are presented. The key ab initio approaches and material realizations are given. The monograph includes detailed discussions of the surface Fermi arcs, anomalous transport properties, and collective modes of Dirac and Weyl semimetals. Superconductivity in these materials is briefly addressed.
Chiral Solitons
Author: Keh-fei Liu
Publisher: World Scientific
ISBN: 9814507806
Category : Science
Languages : en
Pages : 580
Book Description
This review volume on topological and nontopological chiral solitons presents a global view on the current developments of this field in particle and nuclear physics. The book addresses problems in quantization, restoration of translational and rotational symmetry, and the field theoretical approach to solitons which are common problems in the field of solitons. Primarily aimed for graduate students and the novice in the field, the collected articless cover a broad spectrum of topics in formalism as well as phenomenology.
Publisher: World Scientific
ISBN: 9814507806
Category : Science
Languages : en
Pages : 580
Book Description
This review volume on topological and nontopological chiral solitons presents a global view on the current developments of this field in particle and nuclear physics. The book addresses problems in quantization, restoration of translational and rotational symmetry, and the field theoretical approach to solitons which are common problems in the field of solitons. Primarily aimed for graduate students and the novice in the field, the collected articless cover a broad spectrum of topics in formalism as well as phenomenology.
The Role of Topology in Materials
Author: Sanju Gupta
Publisher:
ISBN: 9783319765976
Category : Materials science
Languages : en
Pages : 297
Book Description
This book presents the most important advances in the class of topological materials and discusses the topological characterization, modeling and metrology of materials. Further, it addresses currently emerging characterization techniques such as optical and acoustic, vibrational spectroscopy (Brillouin, infrared, Raman), electronic, magnetic, fluorescence correlation imaging, laser lithography, small angle X-ray and neutron scattering and other techniques, including site-selective nanoprobes. The book analyzes the topological aspects to identify and quantify these effects in terms of topology metrics. The topological materials are ubiquitous and range from (i) de novo nanoscale allotropes of carbons in various forms such as nanotubes, nanorings, nanohorns, nanowalls, peapods, graphene, etc. to (ii) metallo-organic frameworks, (iii) helical gold nanotubes, (iv) Möbius conjugated polymers, (v) block co-polymers, (vi) supramolecular assemblies, to (vii) a variety of biological and soft-matter systems, e.g. foams and cellular materials, vesicles of different shapes and genera, biomimetic membranes, and filaments, (viii) topological insulators and topological superconductors, (ix) a variety of Dirac materials including Dirac and Weyl semimetals, as well as (x) knots and network structures. Topological databases and algorithms to model such materials have been also established in this book. In order to understand and properly characterize these important emergent materials, it is necessary to go far beyond the traditional paradigm of microscopic structure-property-function relationships to a paradigm that explicitly incorporates topological aspects from the outset to characterize and/or predict the physical properties and currently untapped functionalities of these advanced materials. Simulation and modeling tools including quantum chemistry, molecular dynamics, 3D visualization and tomography are also indispensable. These concepts have found applications in condensed matter physics, materials science and engineering, physical chemistry and biophysics, and the various topics covered in the book have potential applications in connection with novel synthesis techniques, sensing and catalysis. As such, the book offers a unique resource for graduate students and researchers alike.
Publisher:
ISBN: 9783319765976
Category : Materials science
Languages : en
Pages : 297
Book Description
This book presents the most important advances in the class of topological materials and discusses the topological characterization, modeling and metrology of materials. Further, it addresses currently emerging characterization techniques such as optical and acoustic, vibrational spectroscopy (Brillouin, infrared, Raman), electronic, magnetic, fluorescence correlation imaging, laser lithography, small angle X-ray and neutron scattering and other techniques, including site-selective nanoprobes. The book analyzes the topological aspects to identify and quantify these effects in terms of topology metrics. The topological materials are ubiquitous and range from (i) de novo nanoscale allotropes of carbons in various forms such as nanotubes, nanorings, nanohorns, nanowalls, peapods, graphene, etc. to (ii) metallo-organic frameworks, (iii) helical gold nanotubes, (iv) Möbius conjugated polymers, (v) block co-polymers, (vi) supramolecular assemblies, to (vii) a variety of biological and soft-matter systems, e.g. foams and cellular materials, vesicles of different shapes and genera, biomimetic membranes, and filaments, (viii) topological insulators and topological superconductors, (ix) a variety of Dirac materials including Dirac and Weyl semimetals, as well as (x) knots and network structures. Topological databases and algorithms to model such materials have been also established in this book. In order to understand and properly characterize these important emergent materials, it is necessary to go far beyond the traditional paradigm of microscopic structure-property-function relationships to a paradigm that explicitly incorporates topological aspects from the outset to characterize and/or predict the physical properties and currently untapped functionalities of these advanced materials. Simulation and modeling tools including quantum chemistry, molecular dynamics, 3D visualization and tomography are also indispensable. These concepts have found applications in condensed matter physics, materials science and engineering, physical chemistry and biophysics, and the various topics covered in the book have potential applications in connection with novel synthesis techniques, sensing and catalysis. As such, the book offers a unique resource for graduate students and researchers alike.
Fundamentals of the Theory of Metals
Author: A. A. Abrikosov
Publisher: Courier Dover Publications
ISBN: 0486819019
Category : Science
Languages : en
Pages : 641
Book Description
This comprehensive primer by a Nobel Physicist covers the electronic spectra of metals, electrical and thermal conductivities, galvanomagnetic and thermoelectrical phenomena, the behavior of metals in high-frequency fields, sound absorption, and Fermi-liquid phenomena. Addressing in detail all aspects of the energy spectra of electrons in metals and the theory of superconductivity, it continues to be a valuable resource for the field almost thirty years after its initial publication. Targeted at undergraduate students majoring in physics as well as graduate and postgraduate students, research workers, and teachers, this is an essential reference on the topic of electromagnetism and superconductivity in metals. No special knowledge of metals beyond a course in general physics is needed, although the author does presume a knowledge of quantum mechanics and quantum statistics.
Publisher: Courier Dover Publications
ISBN: 0486819019
Category : Science
Languages : en
Pages : 641
Book Description
This comprehensive primer by a Nobel Physicist covers the electronic spectra of metals, electrical and thermal conductivities, galvanomagnetic and thermoelectrical phenomena, the behavior of metals in high-frequency fields, sound absorption, and Fermi-liquid phenomena. Addressing in detail all aspects of the energy spectra of electrons in metals and the theory of superconductivity, it continues to be a valuable resource for the field almost thirty years after its initial publication. Targeted at undergraduate students majoring in physics as well as graduate and postgraduate students, research workers, and teachers, this is an essential reference on the topic of electromagnetism and superconductivity in metals. No special knowledge of metals beyond a course in general physics is needed, although the author does presume a knowledge of quantum mechanics and quantum statistics.
Geometry, Topology and Physics
Author: Mikio Nakahara
Publisher: Taylor & Francis
ISBN: 1420056948
Category : Mathematics
Languages : en
Pages : 596
Book Description
Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.
Publisher: Taylor & Francis
ISBN: 1420056948
Category : Mathematics
Languages : en
Pages : 596
Book Description
Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.
Fundamentals of Solid State Engineering
Author: Manijeh Razeghi
Publisher: Springer Science & Business Media
ISBN: 0387287515
Category : Technology & Engineering
Languages : en
Pages : 894
Book Description
Provides a multidisciplinary introduction to quantum mechanics, solid state physics, advanced devices, and fabrication Covers wide range of topics in the same style and in the same notation Most up to date developments in semiconductor physics and nano-engineering Mathematical derivations are carried through in detail with emphasis on clarity Timely application areas such as biophotonics , bioelectronics
Publisher: Springer Science & Business Media
ISBN: 0387287515
Category : Technology & Engineering
Languages : en
Pages : 894
Book Description
Provides a multidisciplinary introduction to quantum mechanics, solid state physics, advanced devices, and fabrication Covers wide range of topics in the same style and in the same notation Most up to date developments in semiconductor physics and nano-engineering Mathematical derivations are carried through in detail with emphasis on clarity Timely application areas such as biophotonics , bioelectronics
Two-Dimensional Transition-Metal Dichalcogenides
Author: Alexander V. Kolobov
Publisher: Springer
ISBN: 3319314505
Category : Technology & Engineering
Languages : en
Pages : 545
Book Description
This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.
Publisher: Springer
ISBN: 3319314505
Category : Technology & Engineering
Languages : en
Pages : 545
Book Description
This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.
Basic Physics of Functionalized Graphite
Author: Pablo D. Esquinazi
Publisher: Springer
ISBN: 3319393553
Category : Technology & Engineering
Languages : en
Pages : 197
Book Description
This book summarizes the basic physics of graphite and newly discovered phenomena in this material. The book contains the knowledge needed to understand novel properties of functionalized graphite demonstrating the occurrence of remarkable phenomena in disordered graphite and graphite-based heterostructures. It also discusses applications of thin graphitic samples in future electronics. Graphite consists of a stack of nearly decoupled two-dimensional graphene planes. Because of the low dimensionality and the presence of Dirac fermions, much of graphite physics resembles that of graphene. On the other hand, the multi-layered nature of the graphite structure together with structural and/or chemical disorder are responsible for phenomena that are not observed yet in graphene, such as ferromagnetic order and superconductivity. Each chapter was written by one or more experts in the field whose contributions were relevant in the (re)discovery of (un)known phenomena in graphite. The book is intended as reference for beginners and experts in the field, introducing them to many aspects of the new physics of graphite, with a fresh overview of recently found phenomena and the theoretical frames to understand them.
Publisher: Springer
ISBN: 3319393553
Category : Technology & Engineering
Languages : en
Pages : 197
Book Description
This book summarizes the basic physics of graphite and newly discovered phenomena in this material. The book contains the knowledge needed to understand novel properties of functionalized graphite demonstrating the occurrence of remarkable phenomena in disordered graphite and graphite-based heterostructures. It also discusses applications of thin graphitic samples in future electronics. Graphite consists of a stack of nearly decoupled two-dimensional graphene planes. Because of the low dimensionality and the presence of Dirac fermions, much of graphite physics resembles that of graphene. On the other hand, the multi-layered nature of the graphite structure together with structural and/or chemical disorder are responsible for phenomena that are not observed yet in graphene, such as ferromagnetic order and superconductivity. Each chapter was written by one or more experts in the field whose contributions were relevant in the (re)discovery of (un)known phenomena in graphite. The book is intended as reference for beginners and experts in the field, introducing them to many aspects of the new physics of graphite, with a fresh overview of recently found phenomena and the theoretical frames to understand them.
Force-free Magnetic Fields: Solutions, Topology And Applications
Author: Gerald E Marsh
Publisher: World Scientific
ISBN: 9814499560
Category : Science
Languages : en
Pages : 168
Book Description
After an introductory chapter concerned with the history of force-free magnetic fields, and the relation of such fields to hydrodynamics and astrophysics, the book examines the limits imposed by the virial theorem for finite force-free configurations. Various techniques are then used to find solutions to the field equations. The fact that the field lines corresponding to these solutions have the common feature of being “twisted”, and may be knotted, motivates a discussion of field line topology and the concept of helicity. The topics of field topology, helicity, and magnetic energy in multiply connected domains make the book of interest to a rather wide audience. Applications to solar prominence models, type-II superconductors, and force-reduced magnets are also discussed. The book contains many figures and a wealth of material not readily available elsewhere.
Publisher: World Scientific
ISBN: 9814499560
Category : Science
Languages : en
Pages : 168
Book Description
After an introductory chapter concerned with the history of force-free magnetic fields, and the relation of such fields to hydrodynamics and astrophysics, the book examines the limits imposed by the virial theorem for finite force-free configurations. Various techniques are then used to find solutions to the field equations. The fact that the field lines corresponding to these solutions have the common feature of being “twisted”, and may be knotted, motivates a discussion of field line topology and the concept of helicity. The topics of field topology, helicity, and magnetic energy in multiply connected domains make the book of interest to a rather wide audience. Applications to solar prominence models, type-II superconductors, and force-reduced magnets are also discussed. The book contains many figures and a wealth of material not readily available elsewhere.