Deformation Quantization for Actions of $R^d$

Deformation Quantization for Actions of $R^d$ PDF Author: Marc Aristide Rieffel
Publisher: American Mathematical Soc.
ISBN: 0821825755
Category : Mathematics
Languages : en
Pages : 110

Get Book Here

Book Description
This work describes a general construction of a deformation quantization for any Poisson bracket on a manifold which comes from an action of R ]d on that manifold. These deformation quantizations are strict, in the sense that the deformed product of any two functions is again a function and that there are corresponding involutions and operator norms. Many of the techniques involved are adapted from the theory of pseudo-differential operators. The construction is shown to have many favorable properties. A number of specific examples are described, ranging from basic ones such as quantum disks, quantum tori, and quantum spheres, to aspects of quantum groups.

Deformation Quantization for Actions of Kahlerian Lie Groups

Deformation Quantization for Actions of Kahlerian Lie Groups PDF Author: Pierre Bieliavsky
Publisher: American Mathematical Soc.
ISBN: 1470414910
Category : Mathematics
Languages : en
Pages : 166

Get Book Here

Book Description
Let B be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action of B on a Fréchet algebra . Denote by the associated Fréchet algebra of smooth vectors for this action. In the Abelian case BR and isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures R on . When is a -algebra, every deformed Fréchet algebra admits a compatible pre- -structure, hence yielding a deformation theory at the level of -algebras too. In this memoir, the authors prove both analogous statements for general negatively curved Kählerian groups. The construction relies on the one hand on combining a non-Abelian version of oscillatory integral on tempered Lie groups with geom,etrical objects coming from invariant WKB-quantization of solvable symplectic symmetric spaces, and, on the second hand, in establishing a non-Abelian version of the Calderón-Vaillancourt Theorem. In particular, the authors give an oscillating kernel formula for WKB-star products on symplectic symmetric spaces that fiber over an exponential Lie group.

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics PDF Author: Alexander Cardona
Publisher: Springer
ISBN: 3319654276
Category : Science
Languages : en
Pages : 347

Get Book Here

Book Description
This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.

Deformation Quantization and Index Theory

Deformation Quantization and Index Theory PDF Author: Boris Fedosov
Publisher: Wiley-VCH
ISBN: 9783055017162
Category : Mathematics
Languages : en
Pages : 325

Get Book Here

Book Description
In the monograph a new approach to deformation quantization on a symplectic manifold is developed. This approach gives rise to an important invariant, the so-called Weyl curvature, which is a formal deformation of the symplectic form. The isomophy classes of the deformed algebras are classified by the cohomology classes of the coefficients of the Weyl curvature. These algebras have many common features with the algebra of complete symbols of pseudodifferential operators except that in general there are no corresponding operator algebras. Nevertheless, the developed calculus allows to define the notion of an elliptic element and its index as well as to prove an index theorem similar to that of Atiyah-Singer for elliptic operators. The corresponding index formula contains the Weyl curvature and the usual ingredients entering the Atiyah-Singer formula. Applications of the index theorem are connected with the so-called asymptotic operator representation of the deformed algebra (the operator quantization), the formal deformation parameter h should be replaced by a numerical one ranging over some admissible set of the unit interval having 0 as its limit point. The fact that the index of any elliptic operator is an integer results in necessary quantization conditions: the index of any elliptic element should be asymptotically integer-valued as h tends to 0 over the admissible set. For a compact manifold a direct construction of the asymptotic operator representation shows that these conditions are also sufficient. Finally, a reduction theorem for deformation quantization is proved generalizing the classical Marsden-Weinstein theorem. In this case the index theorem gives the Bohr-Sommerfeld quantization rule and the multiplicities of eigenvalues.

Poisson Geometry, Deformation Quantisation and Group Representations

Poisson Geometry, Deformation Quantisation and Group Representations PDF Author: Simone Gutt
Publisher: Cambridge University Press
ISBN: 9780521615051
Category : Mathematics
Languages : en
Pages : 380

Get Book Here

Book Description
An accessible introduction to Poisson geometry suitable for graduate students.

From Classical Field Theory to Perturbative Quantum Field Theory

From Classical Field Theory to Perturbative Quantum Field Theory PDF Author: Michael Dütsch
Publisher: Springer
ISBN: 3030047385
Category : Mathematics
Languages : en
Pages : 553

Get Book Here

Book Description
This book develops a novel approach to perturbative quantum field theory: starting with a perturbative formulation of classical field theory, quantization is achieved by means of deformation quantization of the underlying free theory and by applying the principle that as much of the classical structure as possible should be maintained. The resulting formulation of perturbative quantum field theory is a version of the Epstein-Glaser renormalization that is conceptually clear, mathematically rigorous and pragmatically useful for physicists. The connection to traditional formulations of perturbative quantum field theory is also elaborated on, and the formalism is illustrated in a wealth of examples and exercises.

In Search of the Riemann Zeros

In Search of the Riemann Zeros PDF Author: Michel Laurent Lapidus
Publisher: American Mathematical Soc.
ISBN: 9780821842225
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
Formulated in 1859, the Riemann Hypothesis is the most celebrated and multifaceted open problem in mathematics. In essence, it states that the primes are distributed as harmoniously as possible--or, equivalently, that the Riemann zeros are located on a single vertical line, called the critical line.

Quanta of Maths

Quanta of Maths PDF Author: Institut des hautes études scientifiques (Paris, France)
Publisher: American Mathematical Soc.
ISBN: 0821852035
Category : Mathematics
Languages : en
Pages : 695

Get Book Here

Book Description
The work of Alain Connes has cut a wide swath across several areas of mathematics and physics. Reflecting its broad spectrum and profound impact on the contemporary mathematical landscape, this collection of articles covers a wealth of topics at the forefront of research in operator algebras, analysis, noncommutative geometry, topology, number theory and physics. Specific themes covered by the articles are as follows: entropy in operator algebras, regular $C^*$-algebras of integral domains, properly infinite $C^*$-algebras, representations of free groups and 1-cohomology, Leibniz seminorms and quantum metric spaces; von Neumann algebras, fundamental Group of $\mathrm{II}_1$ factors, subfactors and planar algebras; Baum-Connes conjecture and property T, equivariant K-homology, Hermitian K-theory; cyclic cohomology, local index formula and twisted spectral triples, tangent groupoid and the index theorem; noncommutative geometry and space-time, spectral action principle, quantum gravity, noncommutative ADHM and instantons, non-compact spectral triples of finite volume, noncommutative coordinate algebras; Hopf algebras, Vinberg algebras, renormalization and combinatorics, motivic renormalization and singularities; cyclotomy and analytic geometry over $F_1$, quantum modular forms; differential K-theory, cyclic theory and S-cohomology.

Proceedings of the Summer School Geometric and Topological Methods for Quantum Field Theory

Proceedings of the Summer School Geometric and Topological Methods for Quantum Field Theory PDF Author: Hernan Ocampo
Publisher: World Scientific
ISBN: 9812381317
Category : Science
Languages : en
Pages : 495

Get Book Here

Book Description
This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school.

Geometric And Topological Methods For Quantum Field Theory - Proceedings Of The Summer School

Geometric And Topological Methods For Quantum Field Theory - Proceedings Of The Summer School PDF Author: Alexander Cardona
Publisher: World Scientific
ISBN: 9814487678
Category : Mathematics
Languages : en
Pages : 495

Get Book Here

Book Description
This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school.