Author: J. B. Bilde-Sørensen
Publisher: Ris National Laboratory
ISBN:
Category : Science
Languages : en
Pages : 612
Book Description
Deformation of Multi-phase and Particle Containing Materials
Author: J. B. Bilde-Sørensen
Publisher: Ris National Laboratory
ISBN:
Category : Science
Languages : en
Pages : 612
Book Description
Publisher: Ris National Laboratory
ISBN:
Category : Science
Languages : en
Pages : 612
Book Description
Recrystallization and Grain Growth of Multi-phase and Particle Containing Materials
Author: Niels Hansen
Publisher:
ISBN:
Category : Composite materials
Languages : en
Pages : 364
Book Description
Publisher:
ISBN:
Category : Composite materials
Languages : en
Pages : 364
Book Description
An Introduction to Metal Matrix Composites
Author: T. W. Clyne
Publisher: Cambridge University Press
ISBN: 9780521483575
Category : Science
Languages : en
Pages : 532
Book Description
Metal matrix composites constitute a new class of materials, now starting to make a major industrial impact in fields as diverse as aerospace, automotives and electronics. This book gives a comprehensive, integrated coverage of these materials, including the background to analytical-, experimental-, production and application-oriented aspects. Clear pictorial descriptions are given of the basic principles governing various properties and characteristics; these encompass mechanical, thermal, electrical, environmental and wear behaviour. Coverage also extends to material processing and component fabrication aspects and to a survey of commercial usage. This book is aimed primarily at scientists, engineers, production managers and all those involved in research on new materials in general, and metal matrix composites in particular, but may also be suitable for use as a text in beginning graduate and advanced undergraduate courses.
Publisher: Cambridge University Press
ISBN: 9780521483575
Category : Science
Languages : en
Pages : 532
Book Description
Metal matrix composites constitute a new class of materials, now starting to make a major industrial impact in fields as diverse as aerospace, automotives and electronics. This book gives a comprehensive, integrated coverage of these materials, including the background to analytical-, experimental-, production and application-oriented aspects. Clear pictorial descriptions are given of the basic principles governing various properties and characteristics; these encompass mechanical, thermal, electrical, environmental and wear behaviour. Coverage also extends to material processing and component fabrication aspects and to a survey of commercial usage. This book is aimed primarily at scientists, engineers, production managers and all those involved in research on new materials in general, and metal matrix composites in particular, but may also be suitable for use as a text in beginning graduate and advanced undergraduate courses.
Mechanical Properties of Metallic Composites
Author: Shojiro Ochiai
Publisher: CRC Press
ISBN: 148229348X
Category : Science
Languages : en
Pages : 823
Book Description
Provides coverage of dispersion-hardened and fibre-reinforced alloys, addressing principal mechanisms, processing and applications. Mechanical behaviour based on dislocation theory and elastic-plastic mechanics is dealt with and data on advanced composites are provided.
Publisher: CRC Press
ISBN: 148229348X
Category : Science
Languages : en
Pages : 823
Book Description
Provides coverage of dispersion-hardened and fibre-reinforced alloys, addressing principal mechanisms, processing and applications. Mechanical behaviour based on dislocation theory and elastic-plastic mechanics is dealt with and data on advanced composites are provided.
Fundamentals of Creep in Metals and Alloys
Author: Michael E. Kassner
Publisher: Elsevier
ISBN: 0080532144
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
* Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussionUnderstanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists. The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world's leading investigators.· Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials· Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures· Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion
Publisher: Elsevier
ISBN: 0080532144
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
* Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussionUnderstanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists. The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world's leading investigators.· Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials· Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures· Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion
Physics Briefs
Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1288
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1288
Book Description
Fatigue of Materials and Structures
Author: Claude Bathias
Publisher: John Wiley & Sons
ISBN: 1118616898
Category : Technology & Engineering
Languages : en
Pages : 251
Book Description
The design of mechanical structures with improved and predictable durability cannot be achieved without a thorough understanding of the mechanisms of fatigue damage and more specifically the relationships between the microstructure of materials and their fatigue properties. Written by leading experts in the field, this book (which is complementary to Fatigue of Materials and Structures: Application to Damage and Design, also edited by Claude Bathias and André Pineau), provides an authoritative, comprehensive and unified treatment of the mechanics and micromechanisms of fatigue in metals, polymers and composites. Each chapter is devoted to one of the major classes of materials or to different types of fatigue damage, thereby providing overall coverage of the field. The book deals with crack initiation, crack growth, low-cycle fatigue, gigacycle fatigue, shorts cracks, fatigue micromechanisms and the local approach to fatigue damage, corrosion fatigue, environmental effects and variable amplitude loadings, and will be an important and much used reference for students, practicing engineers and researchers studying fracture and fatigue in numerous areas of mechanical, structural, civil, design, nuclear, and aerospace engineering as well as materials science.
Publisher: John Wiley & Sons
ISBN: 1118616898
Category : Technology & Engineering
Languages : en
Pages : 251
Book Description
The design of mechanical structures with improved and predictable durability cannot be achieved without a thorough understanding of the mechanisms of fatigue damage and more specifically the relationships between the microstructure of materials and their fatigue properties. Written by leading experts in the field, this book (which is complementary to Fatigue of Materials and Structures: Application to Damage and Design, also edited by Claude Bathias and André Pineau), provides an authoritative, comprehensive and unified treatment of the mechanics and micromechanisms of fatigue in metals, polymers and composites. Each chapter is devoted to one of the major classes of materials or to different types of fatigue damage, thereby providing overall coverage of the field. The book deals with crack initiation, crack growth, low-cycle fatigue, gigacycle fatigue, shorts cracks, fatigue micromechanisms and the local approach to fatigue damage, corrosion fatigue, environmental effects and variable amplitude loadings, and will be an important and much used reference for students, practicing engineers and researchers studying fracture and fatigue in numerous areas of mechanical, structural, civil, design, nuclear, and aerospace engineering as well as materials science.
Stability of Microstructure in Metallic Systems
Author: J. W. Martin
Publisher: Cambridge University Press
ISBN: 9780521423168
Category : Science
Languages : en
Pages : 450
Book Description
The second edition of this textbook, popular amongst students and faculty alike, investigates the various causes of thermodynamic instability in metallic microstructures. Materials theoretically well designed for a particular application may prove inefficient or even useless unless stable under normal working conditions. The authors examine current experimental and theoretical understanding of the kinetics behind structural change in metals. The entire text has been updated in this new edition, and a completely new chapter on highly metastable alloys has been added. The degree to which kinetic stability of the material outweighs its thermodynamic instability is very important, and dictates the useful working life of the material. If the structure is initially produced to an optimum, such changes will degrade the properties of the material. This comprehensive and well-illustrated text, accompanied by ample references, will allow final year undergraduates, graduate students and research workers to investigate in detail the stability of microstructure in metallic systems.
Publisher: Cambridge University Press
ISBN: 9780521423168
Category : Science
Languages : en
Pages : 450
Book Description
The second edition of this textbook, popular amongst students and faculty alike, investigates the various causes of thermodynamic instability in metallic microstructures. Materials theoretically well designed for a particular application may prove inefficient or even useless unless stable under normal working conditions. The authors examine current experimental and theoretical understanding of the kinetics behind structural change in metals. The entire text has been updated in this new edition, and a completely new chapter on highly metastable alloys has been added. The degree to which kinetic stability of the material outweighs its thermodynamic instability is very important, and dictates the useful working life of the material. If the structure is initially produced to an optimum, such changes will degrade the properties of the material. This comprehensive and well-illustrated text, accompanied by ample references, will allow final year undergraduates, graduate students and research workers to investigate in detail the stability of microstructure in metallic systems.
Preferred Orientation in Deformed Metal and Rocks
Author: Hans Rudolf Wenk
Publisher: Elsevier
ISBN: 1483289346
Category : Science
Languages : en
Pages : 631
Book Description
This volume provides an introduction to the texture analysis of deformed materials and explores methods of determining and interpreting the preferred orientation of crystals in deformed polycrystalline aggregates.**The book reviews: 1) the techniques, procedures, and theoretical basis for the accumulation and analysis of orientation data; 2)the processes by which polycrystals deform and the microstructural mechanisms responsible for the development of the preferred orientation; 3) the textures in specific systems and application of principles to the solution of specific problems.**With a combination of metallurgic and geologic applications, Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis will be an important source book for students and researchers in materials science, solid state physics, structural geology, and geophysics.**FROM THE PREFACE: Determination and interpretation of the preferred orientation of crystals in deformed polycrystalline aggregates (in this volume also referred to as texture) has been of longstanding concern to both materials scientists and geologists. A similar theoretical background--such as the dislocation theory of crystal plasticity--has been the basis of understanding flow in metals and rocks; and similar determinative techniques--including microscopy and x-ray diffraction--have been used to study textures and microstructures. Whereas many of the fundamental principles have been established early this century by scientists such as Jeffery, Sachs, Sander, Schmid, Schmidt, and Taylor, only in recent years has knowledge reached a level that provides a quantitative framework which has replaced a largely phenomenological approach. This is expressed in the sudden new emphasis on textural studies, as documented by the large number of recent publications.**This volume contains material to serve as an introduction for those who wish to enter this field as well as reviews for those who are already engaged in advanced research....**The book is divided into three parts. The first (Chapters 2*b17) deals with techniques, procedures, and theoretical bases for the accumulation and analysis of orientation data. The second (Chapters 8*b112) introduces processes by which polycrystals deform and the microstructural mechanisms responsible for the development of the preferred orientation. All those chapters emphasize basic principles and apply to metals as well as to minerals. The third part (Chapters 13*b126) illustrates textures in specific systems and the application of the principles set out in the earlier chapters to the solution of specific problems. Readers of these chapters will quickly become aware that metals have been more exhaustively studied than minerals; but they will also realize that, because of their structural symmetry, metals are in general much simpler than rocks and that the intepretation of metal textures is less involved. An extensive list of relevant references provides access to much of the original literature on textures....
Publisher: Elsevier
ISBN: 1483289346
Category : Science
Languages : en
Pages : 631
Book Description
This volume provides an introduction to the texture analysis of deformed materials and explores methods of determining and interpreting the preferred orientation of crystals in deformed polycrystalline aggregates.**The book reviews: 1) the techniques, procedures, and theoretical basis for the accumulation and analysis of orientation data; 2)the processes by which polycrystals deform and the microstructural mechanisms responsible for the development of the preferred orientation; 3) the textures in specific systems and application of principles to the solution of specific problems.**With a combination of metallurgic and geologic applications, Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis will be an important source book for students and researchers in materials science, solid state physics, structural geology, and geophysics.**FROM THE PREFACE: Determination and interpretation of the preferred orientation of crystals in deformed polycrystalline aggregates (in this volume also referred to as texture) has been of longstanding concern to both materials scientists and geologists. A similar theoretical background--such as the dislocation theory of crystal plasticity--has been the basis of understanding flow in metals and rocks; and similar determinative techniques--including microscopy and x-ray diffraction--have been used to study textures and microstructures. Whereas many of the fundamental principles have been established early this century by scientists such as Jeffery, Sachs, Sander, Schmid, Schmidt, and Taylor, only in recent years has knowledge reached a level that provides a quantitative framework which has replaced a largely phenomenological approach. This is expressed in the sudden new emphasis on textural studies, as documented by the large number of recent publications.**This volume contains material to serve as an introduction for those who wish to enter this field as well as reviews for those who are already engaged in advanced research....**The book is divided into three parts. The first (Chapters 2*b17) deals with techniques, procedures, and theoretical bases for the accumulation and analysis of orientation data. The second (Chapters 8*b112) introduces processes by which polycrystals deform and the microstructural mechanisms responsible for the development of the preferred orientation. All those chapters emphasize basic principles and apply to metals as well as to minerals. The third part (Chapters 13*b126) illustrates textures in specific systems and the application of the principles set out in the earlier chapters to the solution of specific problems. Readers of these chapters will quickly become aware that metals have been more exhaustively studied than minerals; but they will also realize that, because of their structural symmetry, metals are in general much simpler than rocks and that the intepretation of metal textures is less involved. An extensive list of relevant references provides access to much of the original literature on textures....
Modelling Small Deformations of Polycrystals
Author: J. Gittus
Publisher: Springer Science & Business Media
ISBN: 9400941811
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
The scientific work of Jean Mandel has been exceptionally rich in the area of the mechanics of solids; the subjects which he has treated have been extremely diverse, from the theory of plasticity, buckling, soil mechanics, visco-elasticity, the theory of reduced models, and thermo dynamics, to percolation in porous media. But throughout this com prehensive work Jean Mandel has always maintained his interest in forming connections between the properties of materials (strength, deformability, viscosity) and the properties of their basic constituents. What is sometimes referred to in materials science as the transition from the microscopic to the macroscopic has for him been a very constant direction of research, which he never ceased to encourage in the Laboratoire de Mecanique des Solides of which he was the director. It is known that in the plasticity of metals permanent deformations must be sought in intercrystalline slip and more generally in disloca tions and the various microstructural defects. Before deformation of polycrystals is tackled, it is necessary to understand the mechanisms which take place within the crystal: the different systems of slip which may be activated and also the elementary mechanisms of twinning. Jean Mandel has shown how to make the transition from the behaviour of the single crystal to that of the polycrystal and has given the relation ships between the overall permanent deformation of the polycrystal and the plastic deformation of the single crystal.
Publisher: Springer Science & Business Media
ISBN: 9400941811
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
The scientific work of Jean Mandel has been exceptionally rich in the area of the mechanics of solids; the subjects which he has treated have been extremely diverse, from the theory of plasticity, buckling, soil mechanics, visco-elasticity, the theory of reduced models, and thermo dynamics, to percolation in porous media. But throughout this com prehensive work Jean Mandel has always maintained his interest in forming connections between the properties of materials (strength, deformability, viscosity) and the properties of their basic constituents. What is sometimes referred to in materials science as the transition from the microscopic to the macroscopic has for him been a very constant direction of research, which he never ceased to encourage in the Laboratoire de Mecanique des Solides of which he was the director. It is known that in the plasticity of metals permanent deformations must be sought in intercrystalline slip and more generally in disloca tions and the various microstructural defects. Before deformation of polycrystals is tackled, it is necessary to understand the mechanisms which take place within the crystal: the different systems of slip which may be activated and also the elementary mechanisms of twinning. Jean Mandel has shown how to make the transition from the behaviour of the single crystal to that of the polycrystal and has given the relation ships between the overall permanent deformation of the polycrystal and the plastic deformation of the single crystal.