Super-Resolution for Remote Sensing

Super-Resolution for Remote Sensing PDF Author: Michal Kawulok
Publisher: Springer Nature
ISBN: 3031681061
Category :
Languages : en
Pages : 392

Get Book Here

Book Description

Super-Resolution for Remote Sensing

Super-Resolution for Remote Sensing PDF Author: Michal Kawulok
Publisher: Springer Nature
ISBN: 3031681061
Category :
Languages : en
Pages : 392

Get Book Here

Book Description


Computer Vision – ECCV 2018

Computer Vision – ECCV 2018 PDF Author: Vittorio Ferrari
Publisher: Springer
ISBN: 9783030012397
Category : Computers
Languages : en
Pages : 831

Get Book Here

Book Description
The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions.

Fundamentals and Methods of Machine and Deep Learning

Fundamentals and Methods of Machine and Deep Learning PDF Author: Pradeep Singh
Publisher: John Wiley & Sons
ISBN: 1119821886
Category : Computers
Languages : en
Pages : 480

Get Book Here

Book Description
FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications. Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field. The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation. Audience Researchers and engineers in artificial intelligence, computer scientists as well as software developers.

Signal and Image Processing for Remote Sensing

Signal and Image Processing for Remote Sensing PDF Author: C.H. Chen
Publisher: CRC Press
ISBN: 1040031250
Category : Technology & Engineering
Languages : en
Pages : 433

Get Book Here

Book Description
Advances in signal and image processing for remote sensing have been tremendous in recent years. The progress has been particularly significant with the use of deep learning based techniques to solve remote sensing problems. These advancements are the focus of this third edition of Signal and Image Processing for Remote Sensing. It emphasizes the use of machine learning approaches for the extraction of remote sensing information. Other topics include change detection in remote sensing and compressed sensing. With 19 new chapters written by world leaders in the field, this book provides an authoritative examination and offers a unique point of view on signal and image processing. Features Includes all new content and does not replace the previous edition Covers machine learning approaches in both signal and image processing for remote sensing Studies deep learning methods for remote sensing information extraction that is found in other books Explains SAR, microwave, seismic, GPR, and hyperspectral sensors and all sensors considered Discusses improved pattern classification approaches and compressed sensing approaches Provides ample examples of each aspect of both signal and image processing This book is intended for university academics, researchers, postgraduate students, industry, and government professionals who use remote sensing and its applications.

Deep Learning for the Earth Sciences

Deep Learning for the Earth Sciences PDF Author: Gustau Camps-Valls
Publisher: John Wiley & Sons
ISBN: 1119646162
Category : Technology & Engineering
Languages : en
Pages : 436

Get Book Here

Book Description
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.

Artificial Neural Networks and Evolutionary Computation in Remote Sensing

Artificial Neural Networks and Evolutionary Computation in Remote Sensing PDF Author: Taskin Kavzoglu
Publisher: MDPI
ISBN: 3039438271
Category : Science
Languages : en
Pages : 256

Get Book Here

Book Description
Artificial neural networks (ANNs) and evolutionary computation methods have been successfully applied in remote sensing applications since they offer unique advantages for the analysis of remotely-sensed images. ANNs are effective in finding underlying relationships and structures within multidimensional datasets. Thanks to new sensors, we have images with more spectral bands at higher spatial resolutions, which clearly recall big data problems. For this purpose, evolutionary algorithms become the best solution for analysis. This book includes eleven high-quality papers, selected after a careful reviewing process, addressing current remote sensing problems. In the chapters of the book, superstructural optimization was suggested for the optimal design of feedforward neural networks, CNN networks were deployed for a nanosatellite payload to select images eligible for transmission to ground, a new weight feature value convolutional neural network (WFCNN) was applied for fine remote sensing image segmentation and extracting improved land-use information, mask regional-convolutional neural networks (Mask R-CNN) was employed for extracting valley fill faces, state-of-the-art convolutional neural network (CNN)-based object detection models were applied to automatically detect airplanes and ships in VHR satellite images, a coarse-to-fine detection strategy was employed to detect ships at different sizes, and a deep quadruplet network (DQN) was proposed for hyperspectral image classification.

Graph-Based Representations in Pattern Recognition

Graph-Based Representations in Pattern Recognition PDF Author: Mario Vento
Publisher: Springer Nature
ISBN: 3031427955
Category : Computers
Languages : en
Pages : 193

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 13th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition, GbRPR 2023, which took place in Vietri sul Mare, Italy, in September 2023. The 16 full papers included in this book were carefully reviewed and selected from 18 submissions. They were organized in topical sections on graph kernels and graph algorithms; graph neural networks; and graph-based representations and applications.

Image Processing for Remote Sensing

Image Processing for Remote Sensing PDF Author: C.H. Chen
Publisher: CRC Press
ISBN: 142006665X
Category : Technology & Engineering
Languages : en
Pages : 417

Get Book Here

Book Description
Edited by leaders in the field, with contributions by a panel of experts, Image Processing for Remote Sensing explores new and unconventional mathematics methods. The coverage includes the physics and mathematical algorithms of SAR images, a comprehensive treatment of MRF-based remote sensing image classification, statistical approaches for

Convex Optimization for Signal Processing and Communications

Convex Optimization for Signal Processing and Communications PDF Author: Chong-Yung Chi
Publisher: CRC Press
ISBN: 1315349809
Category : Technology & Engineering
Languages : en
Pages : 294

Get Book Here

Book Description
Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications provides fundamental background knowledge of convex optimization, while striking a balance between mathematical theory and applications in signal processing and communications. In addition to comprehensive proofs and perspective interpretations for core convex optimization theory, this book also provides many insightful figures, remarks, illustrative examples, and guided journeys from theory to cutting-edge research explorations, for efficient and in-depth learning, especially for engineering students and professionals. With the powerful convex optimization theory and tools, this book provides you with a new degree of freedom and the capability of solving challenging real-world scientific and engineering problems.

Proceedings of International Conference on Image, Vision and Intelligent Systems 2022 (ICIVIS 2022)

Proceedings of International Conference on Image, Vision and Intelligent Systems 2022 (ICIVIS 2022) PDF Author: Peng You
Publisher: Springer Nature
ISBN: 9819909236
Category : Technology & Engineering
Languages : en
Pages : 1066

Get Book Here

Book Description
This book is a collection of the papers accepted by the ICIVIS 2022β€”The International Conference on Image, Vision and Intelligent Systems, held on August 15–17, 2022, in Jinan, China. The topics focus but are not limited to image, vision and intelligent systems. Each part can be used as an excellent reference by industry practitioners, university faculties, research fellows and undergraduates as well as graduate students who need to build a knowledge base of the most current advances and state of practice in the topics covered by this conference proceedings.