Author: Renuka Sharma
Publisher: John Wiley & Sons
ISBN: 1394214308
Category : Computers
Languages : en
Pages : 500
Book Description
DEEP LEARNING TOOLS for PREDICTING STOCK MARKET MOVEMENTS The book provides a comprehensive overview of current research and developments in the field of deep learning models for stock market forecasting in the developed and developing worlds. The book delves into the realm of deep learning and embraces the challenges, opportunities, and transformation of stock market analysis. Deep learning helps foresee market trends with increased accuracy. With advancements in deep learning, new opportunities in styles, tools, and techniques evolve and embrace data-driven insights with theories and practical applications. Learn about designing, training, and applying predictive models with rigorous attention to detail. This book offers critical thinking skills and the cultivation of discerning approaches to market analysis. The book: details the development of an ensemble model for stock market prediction, combining long short-term memory and autoregressive integrated moving average; explains the rapid expansion of quantum computing technologies in financial systems; provides an overview of deep learning techniques for forecasting stock market trends and examines their effectiveness across different time frames and market conditions; explores applications and implications of various models for causality, volatility, and co-integration in stock markets, offering insights to investors and policymakers. Audience The book has a wide audience of researchers in financial technology, financial software engineering, artificial intelligence, professional market investors, investment institutions, and asset management companies.
Deep Learning Tools for Predicting Stock Market Movements
Author: Renuka Sharma
Publisher: John Wiley & Sons
ISBN: 1394214308
Category : Computers
Languages : en
Pages : 500
Book Description
DEEP LEARNING TOOLS for PREDICTING STOCK MARKET MOVEMENTS The book provides a comprehensive overview of current research and developments in the field of deep learning models for stock market forecasting in the developed and developing worlds. The book delves into the realm of deep learning and embraces the challenges, opportunities, and transformation of stock market analysis. Deep learning helps foresee market trends with increased accuracy. With advancements in deep learning, new opportunities in styles, tools, and techniques evolve and embrace data-driven insights with theories and practical applications. Learn about designing, training, and applying predictive models with rigorous attention to detail. This book offers critical thinking skills and the cultivation of discerning approaches to market analysis. The book: details the development of an ensemble model for stock market prediction, combining long short-term memory and autoregressive integrated moving average; explains the rapid expansion of quantum computing technologies in financial systems; provides an overview of deep learning techniques for forecasting stock market trends and examines their effectiveness across different time frames and market conditions; explores applications and implications of various models for causality, volatility, and co-integration in stock markets, offering insights to investors and policymakers. Audience The book has a wide audience of researchers in financial technology, financial software engineering, artificial intelligence, professional market investors, investment institutions, and asset management companies.
Publisher: John Wiley & Sons
ISBN: 1394214308
Category : Computers
Languages : en
Pages : 500
Book Description
DEEP LEARNING TOOLS for PREDICTING STOCK MARKET MOVEMENTS The book provides a comprehensive overview of current research and developments in the field of deep learning models for stock market forecasting in the developed and developing worlds. The book delves into the realm of deep learning and embraces the challenges, opportunities, and transformation of stock market analysis. Deep learning helps foresee market trends with increased accuracy. With advancements in deep learning, new opportunities in styles, tools, and techniques evolve and embrace data-driven insights with theories and practical applications. Learn about designing, training, and applying predictive models with rigorous attention to detail. This book offers critical thinking skills and the cultivation of discerning approaches to market analysis. The book: details the development of an ensemble model for stock market prediction, combining long short-term memory and autoregressive integrated moving average; explains the rapid expansion of quantum computing technologies in financial systems; provides an overview of deep learning techniques for forecasting stock market trends and examines their effectiveness across different time frames and market conditions; explores applications and implications of various models for causality, volatility, and co-integration in stock markets, offering insights to investors and policymakers. Audience The book has a wide audience of researchers in financial technology, financial software engineering, artificial intelligence, professional market investors, investment institutions, and asset management companies.
Machine Learning for Algorithmic Trading
Author: Stefan Jansen
Publisher: Packt Publishing Ltd
ISBN: 1839216786
Category : Business & Economics
Languages : en
Pages : 822
Book Description
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Publisher: Packt Publishing Ltd
ISBN: 1839216786
Category : Business & Economics
Languages : en
Pages : 822
Book Description
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
How can I get started Investing in the Stock Market
Author: Lokesh Badolia
Publisher: Educreation Publishing
ISBN:
Category : Self-Help
Languages : en
Pages : 63
Book Description
This book is well-researched by the author, in which he has shared the experience and knowledge of some very much experienced and renowned entities from stock market. We want that everybody should have the knowledge regarding the different aspects of stock market, which would encourage people to invest and earn without any fear. This book is just a step forward toward the knowledge of market.
Publisher: Educreation Publishing
ISBN:
Category : Self-Help
Languages : en
Pages : 63
Book Description
This book is well-researched by the author, in which he has shared the experience and knowledge of some very much experienced and renowned entities from stock market. We want that everybody should have the knowledge regarding the different aspects of stock market, which would encourage people to invest and earn without any fear. This book is just a step forward toward the knowledge of market.
Active Portfolio Management: A Quantitative Approach for Producing Superior Returns and Selecting Superior Returns and Controlling Risk
Author: Richard C. Grinold
Publisher: McGraw Hill Professional
ISBN: 007137695X
Category : Business & Economics
Languages : en
Pages : 621
Book Description
"This new edition of Active Portfolio Management continues the standard of excellence established in the first edition, with new and clear insights to help investment professionals." -William E. Jacques, Partner and Chief Investment Officer, Martingale Asset Management. "Active Portfolio Management offers investors an opportunity to better understand the balance between manager skill and portfolio risk. Both fundamental and quantitative investment managers will benefit from studying this updated edition by Grinold and Kahn." -Scott Stewart, Portfolio Manager, Fidelity Select Equity ® Discipline Co-Manager, Fidelity Freedom ® Funds. "This Second edition will not remain on the shelf, but will be continually referenced by both novice and expert. There is a substantial expansion in both depth and breadth on the original. It clearly and concisely explains all aspects of the foundations and the latest thinking in active portfolio management." -Eric N. Remole, Managing Director, Head of Global Structured Equity, Credit Suisse Asset Management. Mathematically rigorous and meticulously organized, Active Portfolio Management broke new ground when it first became available to investment managers in 1994. By outlining an innovative process to uncover raw signals of asset returns, develop them into refined forecasts, then use those forecasts to construct portfolios of exceptional return and minimal risk, i.e., portfolios that consistently beat the market, this hallmark book helped thousands of investment managers. Active Portfolio Management, Second Edition, now sets the bar even higher. Like its predecessor, this volume details how to apply economics, econometrics, and operations research to solving practical investment problems, and uncovering superior profit opportunities. It outlines an active management framework that begins with a benchmark portfolio, then defines exceptional returns as they relate to that benchmark. Beyond the comprehensive treatment of the active management process covered previously, this new edition expands to cover asset allocation, long/short investing, information horizons, and other topics relevant today. It revisits a number of discussions from the first edition, shedding new light on some of today's most pressing issues, including risk, dispersion, market impact, and performance analysis, while providing empirical evidence where appropriate. The result is an updated, comprehensive set of strategic concepts and rules of thumb for guiding the process of-and increasing the profits from-active investment management.
Publisher: McGraw Hill Professional
ISBN: 007137695X
Category : Business & Economics
Languages : en
Pages : 621
Book Description
"This new edition of Active Portfolio Management continues the standard of excellence established in the first edition, with new and clear insights to help investment professionals." -William E. Jacques, Partner and Chief Investment Officer, Martingale Asset Management. "Active Portfolio Management offers investors an opportunity to better understand the balance between manager skill and portfolio risk. Both fundamental and quantitative investment managers will benefit from studying this updated edition by Grinold and Kahn." -Scott Stewart, Portfolio Manager, Fidelity Select Equity ® Discipline Co-Manager, Fidelity Freedom ® Funds. "This Second edition will not remain on the shelf, but will be continually referenced by both novice and expert. There is a substantial expansion in both depth and breadth on the original. It clearly and concisely explains all aspects of the foundations and the latest thinking in active portfolio management." -Eric N. Remole, Managing Director, Head of Global Structured Equity, Credit Suisse Asset Management. Mathematically rigorous and meticulously organized, Active Portfolio Management broke new ground when it first became available to investment managers in 1994. By outlining an innovative process to uncover raw signals of asset returns, develop them into refined forecasts, then use those forecasts to construct portfolios of exceptional return and minimal risk, i.e., portfolios that consistently beat the market, this hallmark book helped thousands of investment managers. Active Portfolio Management, Second Edition, now sets the bar even higher. Like its predecessor, this volume details how to apply economics, econometrics, and operations research to solving practical investment problems, and uncovering superior profit opportunities. It outlines an active management framework that begins with a benchmark portfolio, then defines exceptional returns as they relate to that benchmark. Beyond the comprehensive treatment of the active management process covered previously, this new edition expands to cover asset allocation, long/short investing, information horizons, and other topics relevant today. It revisits a number of discussions from the first edition, shedding new light on some of today's most pressing issues, including risk, dispersion, market impact, and performance analysis, while providing empirical evidence where appropriate. The result is an updated, comprehensive set of strategic concepts and rules of thumb for guiding the process of-and increasing the profits from-active investment management.
The Front Office
Author: Tom Costello
Publisher: Https: //Www.Isbnservices.COM
ISBN: 9781637958476
Category :
Languages : en
Pages : 344
Book Description
Getting into the Hedge Fund industry is hard, being successful in the hedge fund industry is even harder. But the most successful people in the hedge fund industry all have some ideas in common that often mean the difference between success and failure. The Front Office is a guide to those ideas. It's a manual for learning how to think about markets in the way that's most likely to lead to sustained success in the way that the top Institutions, Investment Banks and Hedge Funds do. Anyone can tell you how to register a corporation or how to connect to a lawyer or broker. This isn't a book about those 'back office' issues. This is a book about the hardest part of running a hedge fund. The part that the vast majority of small hedge funds and trading system developers never learn on their own. The part that the accountants, settlement clerks, and back office staffers don't ever see. It explains why some trading systems never reach profitability, why some can't seem to stay profitable, and what to do about it if that happens to you. This isn't a get rich quick book for your average investor. There are no easy answers in it. If you need someone to explain what a stock option is or what Beta means, you should look somewhere else. But if you think you're ready to reach for the brass ring of a career in the institutional investing world, this is an excellent guide. This book explains what those people see when they look at the markets, and what nearly all of the other investors never do.
Publisher: Https: //Www.Isbnservices.COM
ISBN: 9781637958476
Category :
Languages : en
Pages : 344
Book Description
Getting into the Hedge Fund industry is hard, being successful in the hedge fund industry is even harder. But the most successful people in the hedge fund industry all have some ideas in common that often mean the difference between success and failure. The Front Office is a guide to those ideas. It's a manual for learning how to think about markets in the way that's most likely to lead to sustained success in the way that the top Institutions, Investment Banks and Hedge Funds do. Anyone can tell you how to register a corporation or how to connect to a lawyer or broker. This isn't a book about those 'back office' issues. This is a book about the hardest part of running a hedge fund. The part that the vast majority of small hedge funds and trading system developers never learn on their own. The part that the accountants, settlement clerks, and back office staffers don't ever see. It explains why some trading systems never reach profitability, why some can't seem to stay profitable, and what to do about it if that happens to you. This isn't a get rich quick book for your average investor. There are no easy answers in it. If you need someone to explain what a stock option is or what Beta means, you should look somewhere else. But if you think you're ready to reach for the brass ring of a career in the institutional investing world, this is an excellent guide. This book explains what those people see when they look at the markets, and what nearly all of the other investors never do.
Advances in Financial Machine Learning
Author: Marcos Lopez de Prado
Publisher: John Wiley & Sons
ISBN: 1119482119
Category : Business & Economics
Languages : en
Pages : 395
Book Description
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Publisher: John Wiley & Sons
ISBN: 1119482119
Category : Business & Economics
Languages : en
Pages : 395
Book Description
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Applied Soft Computing and Communication Networks
Author: Sabu M. Thampi
Publisher: Springer Nature
ISBN: 9813361735
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
This book constitutes thoroughly refereed post-conference proceedings of the International Applied Soft Computing and Communication Networks (ACN 2020) held in VIT, Chennai, India, during October 14–17, 2020. The research papers presented were carefully reviewed and selected from several initial submissions. The book is directed to the researchers and scientists engaged in various fields of intelligent systems.
Publisher: Springer Nature
ISBN: 9813361735
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
This book constitutes thoroughly refereed post-conference proceedings of the International Applied Soft Computing and Communication Networks (ACN 2020) held in VIT, Chennai, India, during October 14–17, 2020. The research papers presented were carefully reviewed and selected from several initial submissions. The book is directed to the researchers and scientists engaged in various fields of intelligent systems.
Hands-On Machine Learning for Algorithmic Trading
Author: Stefan Jansen
Publisher: Packt Publishing Ltd
ISBN: 1789342716
Category : Computers
Languages : en
Pages : 668
Book Description
Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and Keras Key FeaturesImplement machine learning algorithms to build, train, and validate algorithmic modelsCreate your own algorithmic design process to apply probabilistic machine learning approaches to trading decisionsDevelop neural networks for algorithmic trading to perform time series forecasting and smart analyticsBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies. This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You'll practice the ML workflow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies. Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym. What you will learnImplement machine learning techniques to solve investment and trading problemsLeverage market, fundamental, and alternative data to research alpha factorsDesign and fine-tune supervised, unsupervised, and reinforcement learning modelsOptimize portfolio risk and performance using pandas, NumPy, and scikit-learnIntegrate machine learning models into a live trading strategy on QuantopianEvaluate strategies using reliable backtesting methodologies for time seriesDesign and evaluate deep neural networks using Keras, PyTorch, and TensorFlowWork with reinforcement learning for trading strategies in the OpenAI GymWho this book is for Hands-On Machine Learning for Algorithmic Trading is for data analysts, data scientists, and Python developers, as well as investment analysts and portfolio managers working within the finance and investment industry. If you want to perform efficient algorithmic trading by developing smart investigating strategies using machine learning algorithms, this is the book for you. Some understanding of Python and machine learning techniques is mandatory.
Publisher: Packt Publishing Ltd
ISBN: 1789342716
Category : Computers
Languages : en
Pages : 668
Book Description
Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and Keras Key FeaturesImplement machine learning algorithms to build, train, and validate algorithmic modelsCreate your own algorithmic design process to apply probabilistic machine learning approaches to trading decisionsDevelop neural networks for algorithmic trading to perform time series forecasting and smart analyticsBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies. This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You'll practice the ML workflow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies. Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym. What you will learnImplement machine learning techniques to solve investment and trading problemsLeverage market, fundamental, and alternative data to research alpha factorsDesign and fine-tune supervised, unsupervised, and reinforcement learning modelsOptimize portfolio risk and performance using pandas, NumPy, and scikit-learnIntegrate machine learning models into a live trading strategy on QuantopianEvaluate strategies using reliable backtesting methodologies for time seriesDesign and evaluate deep neural networks using Keras, PyTorch, and TensorFlowWork with reinforcement learning for trading strategies in the OpenAI GymWho this book is for Hands-On Machine Learning for Algorithmic Trading is for data analysts, data scientists, and Python developers, as well as investment analysts and portfolio managers working within the finance and investment industry. If you want to perform efficient algorithmic trading by developing smart investigating strategies using machine learning algorithms, this is the book for you. Some understanding of Python and machine learning techniques is mandatory.
The Predictors
Author: Thomas A. Bass
Publisher: Macmillan
ISBN: 9780805057577
Category : Business & Economics
Languages : en
Pages : 324
Book Description
Bass relates how two rumpled physicists set up computers in an adobe house in Santa Fe for a start-up company, and follows their journey into the centers of financial power where "the predictors" find investors and finally go live with real money.
Publisher: Macmillan
ISBN: 9780805057577
Category : Business & Economics
Languages : en
Pages : 324
Book Description
Bass relates how two rumpled physicists set up computers in an adobe house in Santa Fe for a start-up company, and follows their journey into the centers of financial power where "the predictors" find investors and finally go live with real money.
Information Technology and Systems
Author: Álvaro Rocha
Publisher: Springer
ISBN: 3030118908
Category : Technology & Engineering
Languages : en
Pages : 976
Book Description
This book features a selection of articles from The 2019 International Conference on Information Technology & Systems (ICITS’19), held at the Universidad de Las Fuerzas Armadas, in Quito, Ecuador, on 6th to 8th February 2019. ICIST is a global forum for researchers and practitioners to present and discuss recent findings and innovations, current trends, professional experiences and challenges of modern information technology and systems research, together with their technological development and applications. The main topics covered are: information and knowledge management; organizational models and information systems; software and systems modeling; software systems, architectures, applications and tools; multimedia systems and applications; computer networks, mobility and pervasive systems; intelligent and decision support systems; big data analytics and applications; human–computer interaction; ethics, computers & security; health informatics; information technologies in education; cybersecurity and cyber-defense; electromagnetics, sensors and antennas for security.
Publisher: Springer
ISBN: 3030118908
Category : Technology & Engineering
Languages : en
Pages : 976
Book Description
This book features a selection of articles from The 2019 International Conference on Information Technology & Systems (ICITS’19), held at the Universidad de Las Fuerzas Armadas, in Quito, Ecuador, on 6th to 8th February 2019. ICIST is a global forum for researchers and practitioners to present and discuss recent findings and innovations, current trends, professional experiences and challenges of modern information technology and systems research, together with their technological development and applications. The main topics covered are: information and knowledge management; organizational models and information systems; software and systems modeling; software systems, architectures, applications and tools; multimedia systems and applications; computer networks, mobility and pervasive systems; intelligent and decision support systems; big data analytics and applications; human–computer interaction; ethics, computers & security; health informatics; information technologies in education; cybersecurity and cyber-defense; electromagnetics, sensors and antennas for security.