Deep Learning through Sparse and Low-Rank Modeling

Deep Learning through Sparse and Low-Rank Modeling PDF Author: Zhangyang Wang
Publisher: Academic Press
ISBN: 0128136596
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.

Deep Learning through Sparse and Low-Rank Modeling

Deep Learning through Sparse and Low-Rank Modeling PDF Author: Zhangyang Wang
Publisher: Academic Press
ISBN: 0128136596
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.

Generalized Low Rank Models

Generalized Low Rank Models PDF Author: Madeleine Udell
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. This dissertation extends the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, k-means, k-SVD, and maximum margin matrix factorization. The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously. It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features. We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.

Artificial Intelligence, Evolutionary Computing and Metaheuristics

Artificial Intelligence, Evolutionary Computing and Metaheuristics PDF Author: Xin-She Yang
Publisher: Springer
ISBN: 3642296947
Category : Technology & Engineering
Languages : en
Pages : 797

Get Book Here

Book Description
Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation. Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo search, and multiobjective optimization and many applications. These reviews and chapters not only provide a timely snapshot of the state-of-art developments, but also provide inspiration for young researchers to carry out potentially ground-breaking research in the active, diverse research areas in artificial intelligence, cryptography, machine learning, evolutionary computation, and nature-inspired metaheuristics. This edited book can serve as a timely reference for graduates, researchers and engineers in artificial intelligence, computer sciences, computational intelligence, soft computing, optimization, and applied sciences.

Vision Models for High Dynamic Range and Wide Colour Gamut Imaging

Vision Models for High Dynamic Range and Wide Colour Gamut Imaging PDF Author: Marcelo Bertalmío
Publisher: Academic Press
ISBN: 0128138955
Category : Computers
Languages : en
Pages : 326

Get Book Here

Book Description
To enhance the overall viewing experience (for cinema, TV, games, AR/VR) the media industry is continuously striving to improve image quality. Currently the emphasis is on High Dynamic Range (HDR) and Wide Colour Gamut (WCG) technologies, which yield images with greater contrast and more vivid colours. The uptake of these technologies, however, has been hampered by the significant challenge of understanding the science behind visual perception. Vision Models for High Dynamic Range and Wide Colour Gamut Imaging provides university researchers and graduate students in computer science, computer engineering, vision science, as well as industry R&D engineers, an insight into the science and methods for HDR and WCG. It presents the underlying principles and latest practical methods in a detailed and accessible way, highlighting how the use of vision models is a key element of all state-of-the-art methods for these emerging technologies. - Presents the underlying vision science principles and models that are essential to the emerging technologies of HDR and WCG - Explores state-of-the-art techniques for tone and gamut mapping - Discusses open challenges and future directions of HDR and WCG research

Machine Learning Techniques on Gene Function Prediction Volume II

Machine Learning Techniques on Gene Function Prediction Volume II PDF Author: Quan Zou
Publisher: Frontiers Media SA
ISBN: 2889766322
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description


Handbook of Robust Low-Rank and Sparse Matrix Decomposition

Handbook of Robust Low-Rank and Sparse Matrix Decomposition PDF Author: Thierry Bouwmans
Publisher: CRC Press
ISBN: 1315353539
Category : Computers
Languages : en
Pages : 510

Get Book Here

Book Description
Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.

Computer Vision for Microscopy Image Analysis

Computer Vision for Microscopy Image Analysis PDF Author: Mei Chen
Publisher: Academic Press
ISBN: 0128149736
Category : Computers
Languages : en
Pages : 230

Get Book Here

Book Description
Are you a computer scientist working on image analysis? Are you a biologist seeking tools to process the microscopy data from image-based experiments? Computer Vision for Microscopy Image Analysis provides a comprehensive and in-depth discussion of modern computer vision techniques, in particular deep learning, for microscopy image analysis that will advance your efforts.Progress in imaging techniques has enabled the acquisition of large volumes of microscopy data and made it possible to conduct large-scale, image-based experiments for biomedical discovery. The main challenge and bottleneck in such experiments is the conversion of "big visual data" into interpretable information.Visual analysis of large-scale microscopy data is a daunting task. Computer vision has the potential to automate this task. One key advantage is that computers perform analysis more reproducibly and less subjectively than human annotators. Moreover, high-throughput microscopy calls for effective and efficient techniques as there are not enough human resources to advance science by manual annotation.This book articulates the strong need for biologists and computer vision experts to collaborate to overcome the limits of human visual perception, and devotes a chapter each to the major steps in analyzing microscopy images, such as detection and segmentation, classification, tracking, and event detection. - Discover how computer vision can automate and enhance the human assessment of microscopy images for discovery - Grasp the state-of-the-art approaches, especially deep neural networks - Learn where to obtain open-source datasets and software to jumpstart his or her own investigation

Spectral Geometry of Shapes

Spectral Geometry of Shapes PDF Author: Jing Hua
Publisher: Academic Press
ISBN: 0128138424
Category : Computers
Languages : en
Pages : 152

Get Book Here

Book Description
Spectral Geometry of Shapes presents unique shape analysis approaches based on shape spectrum in differential geometry. It provides insights on how to develop geometry-based methods for 3D shape analysis. The book is an ideal learning resource for graduate students and researchers in computer science, computer engineering and applied mathematics who have an interest in 3D shape analysis, shape motion analysis, image analysis, medical image analysis, computer vision and computer graphics. Due to the rapid advancement of 3D acquisition technologies there has been a big increase in 3D shape data that requires a variety of shape analysis methods, hence the need for this comprehensive resource.

Enterprise Information Systems

Enterprise Information Systems PDF Author: Joaquim Filipe
Publisher: Springer Nature
ISBN: 3031393864
Category : Computers
Languages : en
Pages : 439

Get Book Here

Book Description
This book constitutes the refereed post-conference proceedings of the 24th International Conference on Enterprise Information Systems, ICEIS 2022, This conference was held virtually due to the COVID-19 crisis, during April 25-27, 2022. The 20 full papers included in this book were carefully reviewed and selected from 197 submissions. They were organized in topical sections as follows: Databases and Information Systems Integration; Artificial Intelligence and Decision Support Systems; Information Systems Analysis and Specification; Human-Computer Interaction; and Enterprise Architecture.

Low-Rank Models in Visual Analysis

Low-Rank Models in Visual Analysis PDF Author: Zhouchen Lin
Publisher: Academic Press
ISBN: 0128127325
Category : Computers
Languages : en
Pages : 262

Get Book Here

Book Description
Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides insight into the ideas behind the models and their algorithms, giving details of their formulation and deduction. The main applications included are video denoising, background modeling, image alignment and rectification, motion segmentation, image segmentation and image saliency detection. Readers will learn which Low-rank models are highly useful in practice (both linear and nonlinear models), how to solve low-rank models efficiently, and how to apply low-rank models to real problems. - Presents a self-contained, up-to-date introduction that covers underlying theory, algorithms and the state-of-the-art in current applications - Provides a full and clear explanation of the theory behind the models - Includes detailed proofs in the appendices