Author: Zhen Cui
Publisher: Frontiers Media SA
ISBN: 2832526365
Category : Science
Languages : en
Pages : 151
Book Description
Affective computing refers to computing that relates to, arises from, or influences emotions. The goal of affective computing is to bridge the gap between humans and machines and ultimately endow machines with emotional intelligence for improving natural human-machine interaction. In the context of human-robot interaction (HRI), it is hoped that robots can be endowed with human-like capabilities of observation, interpretation, and emotional expression. The research on affective computing has recently achieved extensive progress with many fields contributing including neuroscience, psychology, education, medicine, behavior, sociology, and computer science. Current research in affective computing concentrates on estimating human emotions through different forms of signals such as speech, face, text, EEG, fMRI, and many others. In neuroscience, the neural mechanisms of emotion are explored by combining neuroscience with the psychological study of personality, emotion, and mood. In psychology and philosophy, emotion typically includes a subjective, conscious experience characterized primarily by psychophysiological expressions, biological reactions, and mental states. The multi-disciplinary features of understanding “emotion” result in the fact that inferring the emotion of humans is definitely difficult. As a result, a multi-disciplinary approach is required to facilitate the development of affective computing. One of the challenging problems in affective computing is the affective gap, i.e., the inconsistency between the extracted feature representations and subjective emotions. To bridge the affective gap, various hand-crafted features have been widely employed to characterize subjective emotions. However, these hand-crafted features are usually low-level, and they may hence not be discriminative enough to depict subjective emotions. To address this issue, the recently-emerged deep learning (also called deep neural networks) techniques provide a possible solution. Due to the used multi-layer network structure, deep learning techniques are capable of learning high-level contributing features from a large dataset and have exhibited excellent performance in multiple application domains such as computer vision, signal processing, natural language processing, human-computer interaction, and so on. The goal of this Research Topic is to gather novel contributions on deep learning techniques applied to affective computing across the diverse fields of psychology, machine learning, neuroscience, education, behavior, sociology, and computer science to converge with those active in other research areas, such as speech emotion recognition, facial expression recognition, Electroencephalogram (EEG) based emotion estimation, human physiological signal (heart rate) estimation, affective human-robot interaction, multimodal affective computing, etc. We welcome researchers to contribute their original papers as well as review articles to provide works regarding the neural approach from computation to affective computing systems. This Research Topic aims to bring together research including, but not limited to: • Deep learning architectures and algorithms for affective computing tasks such as emotion recognition from speech, face, text, EEG, fMRI, and many others. • Explainability of deep Learning algorithms for affective computing. • Multi-task learning techniques for emotion, personality and depression detection, etc. • Novel datasets for affective computing • Applications of affective computing in robots, such as emotion-aware human-robot interaction and social robots, etc.
Deep Learning Techniques Applied to Affective Computing
Author: Zhen Cui
Publisher: Frontiers Media SA
ISBN: 2832526365
Category : Science
Languages : en
Pages : 151
Book Description
Affective computing refers to computing that relates to, arises from, or influences emotions. The goal of affective computing is to bridge the gap between humans and machines and ultimately endow machines with emotional intelligence for improving natural human-machine interaction. In the context of human-robot interaction (HRI), it is hoped that robots can be endowed with human-like capabilities of observation, interpretation, and emotional expression. The research on affective computing has recently achieved extensive progress with many fields contributing including neuroscience, psychology, education, medicine, behavior, sociology, and computer science. Current research in affective computing concentrates on estimating human emotions through different forms of signals such as speech, face, text, EEG, fMRI, and many others. In neuroscience, the neural mechanisms of emotion are explored by combining neuroscience with the psychological study of personality, emotion, and mood. In psychology and philosophy, emotion typically includes a subjective, conscious experience characterized primarily by psychophysiological expressions, biological reactions, and mental states. The multi-disciplinary features of understanding “emotion” result in the fact that inferring the emotion of humans is definitely difficult. As a result, a multi-disciplinary approach is required to facilitate the development of affective computing. One of the challenging problems in affective computing is the affective gap, i.e., the inconsistency between the extracted feature representations and subjective emotions. To bridge the affective gap, various hand-crafted features have been widely employed to characterize subjective emotions. However, these hand-crafted features are usually low-level, and they may hence not be discriminative enough to depict subjective emotions. To address this issue, the recently-emerged deep learning (also called deep neural networks) techniques provide a possible solution. Due to the used multi-layer network structure, deep learning techniques are capable of learning high-level contributing features from a large dataset and have exhibited excellent performance in multiple application domains such as computer vision, signal processing, natural language processing, human-computer interaction, and so on. The goal of this Research Topic is to gather novel contributions on deep learning techniques applied to affective computing across the diverse fields of psychology, machine learning, neuroscience, education, behavior, sociology, and computer science to converge with those active in other research areas, such as speech emotion recognition, facial expression recognition, Electroencephalogram (EEG) based emotion estimation, human physiological signal (heart rate) estimation, affective human-robot interaction, multimodal affective computing, etc. We welcome researchers to contribute their original papers as well as review articles to provide works regarding the neural approach from computation to affective computing systems. This Research Topic aims to bring together research including, but not limited to: • Deep learning architectures and algorithms for affective computing tasks such as emotion recognition from speech, face, text, EEG, fMRI, and many others. • Explainability of deep Learning algorithms for affective computing. • Multi-task learning techniques for emotion, personality and depression detection, etc. • Novel datasets for affective computing • Applications of affective computing in robots, such as emotion-aware human-robot interaction and social robots, etc.
Publisher: Frontiers Media SA
ISBN: 2832526365
Category : Science
Languages : en
Pages : 151
Book Description
Affective computing refers to computing that relates to, arises from, or influences emotions. The goal of affective computing is to bridge the gap between humans and machines and ultimately endow machines with emotional intelligence for improving natural human-machine interaction. In the context of human-robot interaction (HRI), it is hoped that robots can be endowed with human-like capabilities of observation, interpretation, and emotional expression. The research on affective computing has recently achieved extensive progress with many fields contributing including neuroscience, psychology, education, medicine, behavior, sociology, and computer science. Current research in affective computing concentrates on estimating human emotions through different forms of signals such as speech, face, text, EEG, fMRI, and many others. In neuroscience, the neural mechanisms of emotion are explored by combining neuroscience with the psychological study of personality, emotion, and mood. In psychology and philosophy, emotion typically includes a subjective, conscious experience characterized primarily by psychophysiological expressions, biological reactions, and mental states. The multi-disciplinary features of understanding “emotion” result in the fact that inferring the emotion of humans is definitely difficult. As a result, a multi-disciplinary approach is required to facilitate the development of affective computing. One of the challenging problems in affective computing is the affective gap, i.e., the inconsistency between the extracted feature representations and subjective emotions. To bridge the affective gap, various hand-crafted features have been widely employed to characterize subjective emotions. However, these hand-crafted features are usually low-level, and they may hence not be discriminative enough to depict subjective emotions. To address this issue, the recently-emerged deep learning (also called deep neural networks) techniques provide a possible solution. Due to the used multi-layer network structure, deep learning techniques are capable of learning high-level contributing features from a large dataset and have exhibited excellent performance in multiple application domains such as computer vision, signal processing, natural language processing, human-computer interaction, and so on. The goal of this Research Topic is to gather novel contributions on deep learning techniques applied to affective computing across the diverse fields of psychology, machine learning, neuroscience, education, behavior, sociology, and computer science to converge with those active in other research areas, such as speech emotion recognition, facial expression recognition, Electroencephalogram (EEG) based emotion estimation, human physiological signal (heart rate) estimation, affective human-robot interaction, multimodal affective computing, etc. We welcome researchers to contribute their original papers as well as review articles to provide works regarding the neural approach from computation to affective computing systems. This Research Topic aims to bring together research including, but not limited to: • Deep learning architectures and algorithms for affective computing tasks such as emotion recognition from speech, face, text, EEG, fMRI, and many others. • Explainability of deep Learning algorithms for affective computing. • Multi-task learning techniques for emotion, personality and depression detection, etc. • Novel datasets for affective computing • Applications of affective computing in robots, such as emotion-aware human-robot interaction and social robots, etc.
Applied Affective Computing
Author: Leimin Tian
Publisher: Morgan & Claypool
ISBN: 1450395937
Category : Computers
Languages : en
Pages : 308
Book Description
Affective computing is a nascent field situated at the intersection of artificial intelligence with social and behavioral science. It studies how human emotions are perceived and expressed, which then informs the design of intelligent agents and systems that can either mimic this behavior to improve their intelligence or incorporate such knowledge to effectively understand and communicate with their human collaborators. Affective computing research has recently seen significant advances and is making a critical transformation from exploratory studies to real-world applications in the emerging research area known as applied affective computing. This book offers readers an overview of the state-of-the-art and emerging themes in affective computing, including a comprehensive review of the existing approaches to affective computing systems and social signal processing. It provides in-depth case studies of applied affective computing in various domains, such as social robotics and mental well-being. It also addresses ethical concerns related to affective computing and how to prevent misuse of the technology in research and applications. Further, this book identifies future directions for the field and summarizes a set of guidelines for developing next-generation affective computing systems that are effective, safe, and human-centered. For researchers and practitioners new to affective computing, this book will serve as an introduction to the field to help them in identifying new research topics or developing novel applications. For more experienced researchers and practitioners, the discussions in this book provide guidance for adopting a human-centered design and development approach to advance affective computing.
Publisher: Morgan & Claypool
ISBN: 1450395937
Category : Computers
Languages : en
Pages : 308
Book Description
Affective computing is a nascent field situated at the intersection of artificial intelligence with social and behavioral science. It studies how human emotions are perceived and expressed, which then informs the design of intelligent agents and systems that can either mimic this behavior to improve their intelligence or incorporate such knowledge to effectively understand and communicate with their human collaborators. Affective computing research has recently seen significant advances and is making a critical transformation from exploratory studies to real-world applications in the emerging research area known as applied affective computing. This book offers readers an overview of the state-of-the-art and emerging themes in affective computing, including a comprehensive review of the existing approaches to affective computing systems and social signal processing. It provides in-depth case studies of applied affective computing in various domains, such as social robotics and mental well-being. It also addresses ethical concerns related to affective computing and how to prevent misuse of the technology in research and applications. Further, this book identifies future directions for the field and summarizes a set of guidelines for developing next-generation affective computing systems that are effective, safe, and human-centered. For researchers and practitioners new to affective computing, this book will serve as an introduction to the field to help them in identifying new research topics or developing novel applications. For more experienced researchers and practitioners, the discussions in this book provide guidance for adopting a human-centered design and development approach to advance affective computing.
Smart Computer Vision
Author: B. Vinoth Kumar
Publisher: Springer Nature
ISBN: 3031205413
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
This book addresses and disseminates research and development in the applications of intelligent techniques for computer vision, the field that works on enabling computers to see, identify, and process images in the same way that human vision does, and then providing appropriate output. The book provides contributions which include theory, case studies, and intelligent techniques pertaining to computer vision applications. The book helps readers grasp the essence of the recent advances in this complex field. The audience includes researchers, professionals, practitioners, and students from academia and industry who work in this interdisciplinary field. The authors aim to inspire future research both from theoretical and practical viewpoints to spur further advances in the field.
Publisher: Springer Nature
ISBN: 3031205413
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
This book addresses and disseminates research and development in the applications of intelligent techniques for computer vision, the field that works on enabling computers to see, identify, and process images in the same way that human vision does, and then providing appropriate output. The book provides contributions which include theory, case studies, and intelligent techniques pertaining to computer vision applications. The book helps readers grasp the essence of the recent advances in this complex field. The audience includes researchers, professionals, practitioners, and students from academia and industry who work in this interdisciplinary field. The authors aim to inspire future research both from theoretical and practical viewpoints to spur further advances in the field.
Affective Computing
Author: Rosalind W. Picard
Publisher: MIT Press
ISBN: 9780262661157
Category : Computers
Languages : en
Pages : 308
Book Description
According to Rosalind Picard, if we want computers to be genuinely intelligent and to interact naturally with us, we must give computers the ability to recognize, understand, even to have and express emotions. The latest scientific findings indicate that emotions play an essential role in decision making, perception, learning, and more—that is, they influence the very mechanisms of rational thinking. Not only too much, but too little emotion can impair decision making. According to Rosalind Picard, if we want computers to be genuinely intelligent and to interact naturally with us, we must give computers the ability to recognize, understand, even to have and express emotions. Part 1 of this book provides the intellectual framework for affective computing. It includes background on human emotions, requirements for emotionally intelligent computers, applications of affective computing, and moral and social questions raised by the technology. Part 2 discusses the design and construction of affective computers. Although this material is more technical than that in Part 1, the author has kept it less technical than typical scientific publications in order to make it accessible to newcomers. Topics in Part 2 include signal-based representations of emotions, human affect recognition as a pattern recognition and learning problem, recent and ongoing efforts to build models of emotion for synthesizing emotions in computers, and the new application area of affective wearable computers.
Publisher: MIT Press
ISBN: 9780262661157
Category : Computers
Languages : en
Pages : 308
Book Description
According to Rosalind Picard, if we want computers to be genuinely intelligent and to interact naturally with us, we must give computers the ability to recognize, understand, even to have and express emotions. The latest scientific findings indicate that emotions play an essential role in decision making, perception, learning, and more—that is, they influence the very mechanisms of rational thinking. Not only too much, but too little emotion can impair decision making. According to Rosalind Picard, if we want computers to be genuinely intelligent and to interact naturally with us, we must give computers the ability to recognize, understand, even to have and express emotions. Part 1 of this book provides the intellectual framework for affective computing. It includes background on human emotions, requirements for emotionally intelligent computers, applications of affective computing, and moral and social questions raised by the technology. Part 2 discusses the design and construction of affective computers. Although this material is more technical than that in Part 1, the author has kept it less technical than typical scientific publications in order to make it accessible to newcomers. Topics in Part 2 include signal-based representations of emotions, human affect recognition as a pattern recognition and learning problem, recent and ongoing efforts to build models of emotion for synthesizing emotions in computers, and the new application area of affective wearable computers.
Applied Informatics
Author: Hector Florez
Publisher: Springer Nature
ISBN: 3031751477
Category :
Languages : en
Pages : 301
Book Description
Publisher: Springer Nature
ISBN: 3031751477
Category :
Languages : en
Pages : 301
Book Description
Machine and Deep Learning Techniques for Emotion Detection
Author: Rai, Mritunjay
Publisher: IGI Global
ISBN:
Category : Psychology
Languages : en
Pages : 333
Book Description
Computer understanding of human emotions has become crucial and complex within the era of digital interaction and artificial intelligence. Emotion detection, a field within AI, holds promise for enhancing user experiences, personalizing services, and revolutionizing industries. However, navigating this landscape requires a deep understanding of machine and deep learning techniques and the interdisciplinary challenges accompanying them. Machine and Deep Learning Techniques for Emotion Detection offer a comprehensive solution to this pressing problem. Designed for academic scholars, practitioners, and students, it is a guiding light through the intricate terrain of emotion detection. By blending theoretical insights with practical implementations and real-world case studies, our book equips readers with the knowledge and tools needed to advance the frontier of emotion analysis using machine and deep learning methodologies.
Publisher: IGI Global
ISBN:
Category : Psychology
Languages : en
Pages : 333
Book Description
Computer understanding of human emotions has become crucial and complex within the era of digital interaction and artificial intelligence. Emotion detection, a field within AI, holds promise for enhancing user experiences, personalizing services, and revolutionizing industries. However, navigating this landscape requires a deep understanding of machine and deep learning techniques and the interdisciplinary challenges accompanying them. Machine and Deep Learning Techniques for Emotion Detection offer a comprehensive solution to this pressing problem. Designed for academic scholars, practitioners, and students, it is a guiding light through the intricate terrain of emotion detection. By blending theoretical insights with practical implementations and real-world case studies, our book equips readers with the knowledge and tools needed to advance the frontier of emotion analysis using machine and deep learning methodologies.
Bridging the Gap between Machine Learning and Affective Computing
Author: Zhen Cui
Publisher: Frontiers Media SA
ISBN: 2832503799
Category : Science
Languages : en
Pages : 151
Book Description
Affective computing refers to computing that relates to, arises from, or influences emotions, as pioneered by Rosalind Picard in 1995. The goal of affective computing is to bridge the gap between human and machines and ultimately enable robots to communicate with human naturally and emotionally. Recently, the research on affective computing has gained considerable progress with many fields contributing including neuroscience, psychology, education, medicine, behavior, sociology, and computer science. Current research in affective computing mainly focuses on estimating of human emotions through different forms of signals, e.g., face video, EEG, Speech, PET scans or fMRI. Inferring the emotion of humans is difficult, as emotion is a subjective, unconscious experience characterized primarily by psycho-physiological expressions and biological reactions. It is influenced by hormones and neurotransmitters such as dopamine, noradrenaline, serotonin, oxytocin, GABA… etc. The physiology of emotion is closely linked to arousal of the nervous system with various states and strengths relating, apparently, to different particular emotions. To understand “emotion” or “affect” merely by machine learning or big data analysis is not enough, but the understanding and applications from the intrinsic features of emotions from the neuroscience aspect is essential.
Publisher: Frontiers Media SA
ISBN: 2832503799
Category : Science
Languages : en
Pages : 151
Book Description
Affective computing refers to computing that relates to, arises from, or influences emotions, as pioneered by Rosalind Picard in 1995. The goal of affective computing is to bridge the gap between human and machines and ultimately enable robots to communicate with human naturally and emotionally. Recently, the research on affective computing has gained considerable progress with many fields contributing including neuroscience, psychology, education, medicine, behavior, sociology, and computer science. Current research in affective computing mainly focuses on estimating of human emotions through different forms of signals, e.g., face video, EEG, Speech, PET scans or fMRI. Inferring the emotion of humans is difficult, as emotion is a subjective, unconscious experience characterized primarily by psycho-physiological expressions and biological reactions. It is influenced by hormones and neurotransmitters such as dopamine, noradrenaline, serotonin, oxytocin, GABA… etc. The physiology of emotion is closely linked to arousal of the nervous system with various states and strengths relating, apparently, to different particular emotions. To understand “emotion” or “affect” merely by machine learning or big data analysis is not enough, but the understanding and applications from the intrinsic features of emotions from the neuroscience aspect is essential.
Advanced Applications of Generative AI and Natural Language Processing Models
Author: Obaid, Ahmed J.
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 505
Book Description
The rapid advancements in Artificial Intelligence (AI), specifically in Natural Language Processing (NLP) and Generative AI, pose a challenge for academic scholars. Staying current with the latest techniques and applications in these fields is difficult due to their dynamic nature, while the lack of comprehensive resources hinders scholars' ability to effectively utilize these technologies. Advanced Applications of Generative AI and Natural Language Processing Models offers an effective solution to address these challenges. This comprehensive book delves into cutting-edge developments in NLP and Generative AI. It provides insights into the functioning of these technologies, their benefits, and associated challenges. Targeting students, researchers, and professionals in AI, NLP, and computer science, this book serves as a vital reference for deepening knowledge of advanced NLP techniques and staying updated on the latest advancements in generative AI. By providing real-world examples and practical applications, scholars can apply their learnings to solve complex problems across various domains. Embracing Advanced Applications of Generative AI and Natural Language Processing Modelsequips academic scholars with the necessary knowledge and insights to explore innovative applications and unleash the full potential of generative AI and NLP models for effective problem-solving.
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 505
Book Description
The rapid advancements in Artificial Intelligence (AI), specifically in Natural Language Processing (NLP) and Generative AI, pose a challenge for academic scholars. Staying current with the latest techniques and applications in these fields is difficult due to their dynamic nature, while the lack of comprehensive resources hinders scholars' ability to effectively utilize these technologies. Advanced Applications of Generative AI and Natural Language Processing Models offers an effective solution to address these challenges. This comprehensive book delves into cutting-edge developments in NLP and Generative AI. It provides insights into the functioning of these technologies, their benefits, and associated challenges. Targeting students, researchers, and professionals in AI, NLP, and computer science, this book serves as a vital reference for deepening knowledge of advanced NLP techniques and staying updated on the latest advancements in generative AI. By providing real-world examples and practical applications, scholars can apply their learnings to solve complex problems across various domains. Embracing Advanced Applications of Generative AI and Natural Language Processing Modelsequips academic scholars with the necessary knowledge and insights to explore innovative applications and unleash the full potential of generative AI and NLP models for effective problem-solving.
Knowledge Graphs and Semantic Web
Author: Boris Villazón-Terrazas
Publisher: Springer Nature
ISBN: 3031214226
Category : Computers
Languages : en
Pages : 355
Book Description
This book constitutes the proceedings of the 4th Iberoamerican Conference and third Indo-American Conference on Knowledge Graphs and Semantic Web, KGSWC 2022, which took place in Madrid, Spain, in November 2022. The 22 full and 3 short research papers presented in this volume were carefully reviewed and selected from 63 submissions. The papers cover topics related to software and its engineering, software creation and management, Emerging technologies, Analysis and design of emerging devices and systems, Emerging tools and methodologies and others.
Publisher: Springer Nature
ISBN: 3031214226
Category : Computers
Languages : en
Pages : 355
Book Description
This book constitutes the proceedings of the 4th Iberoamerican Conference and third Indo-American Conference on Knowledge Graphs and Semantic Web, KGSWC 2022, which took place in Madrid, Spain, in November 2022. The 22 full and 3 short research papers presented in this volume were carefully reviewed and selected from 63 submissions. The papers cover topics related to software and its engineering, software creation and management, Emerging technologies, Analysis and design of emerging devices and systems, Emerging tools and methodologies and others.
Recent Advances in Machine Learning Techniques and Sensor Applications for Human Emotion, Activity Recognition and Support
Author: Kyandoghere Kyamakya
Publisher: Springer Nature
ISBN: 3031718216
Category :
Languages : en
Pages : 290
Book Description
Publisher: Springer Nature
ISBN: 3031718216
Category :
Languages : en
Pages : 290
Book Description