Deep Learning on Microcontrollers

Deep Learning on Microcontrollers PDF Author: Atul Krishna Gupta
Publisher: BPB Publications
ISBN: 9355518056
Category : Computers
Languages : en
Pages : 346

Get Book Here

Book Description
A step-by-step guide that will teach you how to deploy TinyML on microcontrollers KEY FEATURES ● Deploy machine learning models on edge devices with ease. ● Leverage pre-built AI models and deploy them without writing any code. ● Create smart and efficient IoT solutions with TinyML. DESCRIPTION TinyML, or Tiny Machine Learning, is used to enable machine learning on resource-constrained devices, such as microcontrollers and embedded systems. If you want to leverage these low-cost, low-power but strangely powerful devices, then this book is for you. This book aims to increase accessibility to TinyML applications, particularly for professionals who lack the resources or expertise to develop and deploy them on microcontroller-based boards. The book starts by giving a brief introduction to Artificial Intelligence, including classical methods for solving complex problems. It also familiarizes you with the different ML model development and deployment tools, libraries, and frameworks suitable for embedded devices and microcontrollers. The book will then help you build an Air gesture digit recognition system using the Arduino Nano RP2040 board and an AI project for recognizing keywords using the Syntiant TinyML board. Lastly, the book summarizes the concepts covered and provides a brief introduction to topics such as zero-shot learning, one-shot learning, federated learning, and MLOps. By the end of the book, you will be able to develop and deploy end-to-end Tiny ML solutions with ease. WHAT YOU WILL LEARN ● Learn how to build a Keyword recognition system using the Syntiant TinyML board. ● Learn how to build an air gesture digit recognition system using the Arduino Nano RP2040. ● Learn how to test and deploy models on Edge Impulse and Arduino IDE. ● Get tips to enhance system-level performance. ● Explore different real-world use cases of TinyML across various industries. WHO THIS BOOK IS FOR The book is for IoT developers, System engineers, Software engineers, Hardware engineers, and professionals who are interested in integrating AI into their work. This book is a valuable resource for Engineering undergraduates who are interested in learning about microcontrollers and IoT devices but may not know where to begin. TABLE OF CONTENTS 1. Introduction to AI 2. Traditional ML Lifecycle 3. TinyML Hardware and Software Platforms 4. End-to-End TinyML Deployment Phases 5. Real World Use Cases 6. Practical Experiments with TinyML 7. Advance Implementation with TinyML Board 8. Continuous Improvement 9. Conclusion

Deep Learning on Microcontrollers

Deep Learning on Microcontrollers PDF Author: Atul Krishna Gupta
Publisher: BPB Publications
ISBN: 9355518056
Category : Computers
Languages : en
Pages : 346

Get Book Here

Book Description
A step-by-step guide that will teach you how to deploy TinyML on microcontrollers KEY FEATURES ● Deploy machine learning models on edge devices with ease. ● Leverage pre-built AI models and deploy them without writing any code. ● Create smart and efficient IoT solutions with TinyML. DESCRIPTION TinyML, or Tiny Machine Learning, is used to enable machine learning on resource-constrained devices, such as microcontrollers and embedded systems. If you want to leverage these low-cost, low-power but strangely powerful devices, then this book is for you. This book aims to increase accessibility to TinyML applications, particularly for professionals who lack the resources or expertise to develop and deploy them on microcontroller-based boards. The book starts by giving a brief introduction to Artificial Intelligence, including classical methods for solving complex problems. It also familiarizes you with the different ML model development and deployment tools, libraries, and frameworks suitable for embedded devices and microcontrollers. The book will then help you build an Air gesture digit recognition system using the Arduino Nano RP2040 board and an AI project for recognizing keywords using the Syntiant TinyML board. Lastly, the book summarizes the concepts covered and provides a brief introduction to topics such as zero-shot learning, one-shot learning, federated learning, and MLOps. By the end of the book, you will be able to develop and deploy end-to-end Tiny ML solutions with ease. WHAT YOU WILL LEARN ● Learn how to build a Keyword recognition system using the Syntiant TinyML board. ● Learn how to build an air gesture digit recognition system using the Arduino Nano RP2040. ● Learn how to test and deploy models on Edge Impulse and Arduino IDE. ● Get tips to enhance system-level performance. ● Explore different real-world use cases of TinyML across various industries. WHO THIS BOOK IS FOR The book is for IoT developers, System engineers, Software engineers, Hardware engineers, and professionals who are interested in integrating AI into their work. This book is a valuable resource for Engineering undergraduates who are interested in learning about microcontrollers and IoT devices but may not know where to begin. TABLE OF CONTENTS 1. Introduction to AI 2. Traditional ML Lifecycle 3. TinyML Hardware and Software Platforms 4. End-to-End TinyML Deployment Phases 5. Real World Use Cases 6. Practical Experiments with TinyML 7. Advance Implementation with TinyML Board 8. Continuous Improvement 9. Conclusion

TinyML

TinyML PDF Author: Pete Warden
Publisher: O'Reilly Media
ISBN: 1492052019
Category : Computers
Languages : en
Pages : 504

Get Book Here

Book Description
Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size

Practical Deep Learning for Cloud, Mobile, and Edge

Practical Deep Learning for Cloud, Mobile, and Edge PDF Author: Anirudh Koul
Publisher: "O'Reilly Media, Inc."
ISBN: 1492034819
Category : Computers
Languages : en
Pages : 585

Get Book Here

Book Description
Whether you’re a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the next viral AI app, you might have wondered where to begin. This step-by-step guide teaches you how to build practical deep learning applications for the cloud, mobile, browsers, and edge devices using a hands-on approach. Relying on years of industry experience transforming deep learning research into award-winning applications, Anirudh Koul, Siddha Ganju, and Meher Kasam guide you through the process of converting an idea into something that people in the real world can use. Train, tune, and deploy computer vision models with Keras, TensorFlow, Core ML, and TensorFlow Lite Develop AI for a range of devices including Raspberry Pi, Jetson Nano, and Google Coral Explore fun projects, from Silicon Valley’s Not Hotdog app to 40+ industry case studies Simulate an autonomous car in a video game environment and build a miniature version with reinforcement learning Use transfer learning to train models in minutes Discover 50+ practical tips for maximizing model accuracy and speed, debugging, and scaling to millions of users

Making Embedded Systems

Making Embedded Systems PDF Author: Elecia White
Publisher: "O'Reilly Media, Inc."
ISBN: 1449320589
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
Interested in developing embedded systems? Since they donâ??t tolerate inefficiency, these systems require a disciplined approach to programming. This easy-to-read guide helps you cultivate a host of good development practices, based on classic software design patterns and new patterns unique to embedded programming. Learn how to build system architecture for processors, not operating systems, and discover specific techniques for dealing with hardware difficulties and manufacturing requirements. Written by an expert whoâ??s created embedded systems ranging from urban surveillance and DNA scanners to childrenâ??s toys, this book is ideal for intermediate and experienced programmers, no matter what platform you use. Optimize your system to reduce cost and increase performance Develop an architecture that makes your software robust in resource-constrained environments Explore sensors, motors, and other I/O devices Do more with less: reduce RAM consumption, code space, processor cycles, and power consumption Learn how to update embedded code directly in the processor Discover how to implement complex mathematics on small processors Understand what interviewers look for when you apply for an embedded systems job "Making Embedded Systems is the book for a C programmer who wants to enter the fun (and lucrative) world of embedded systems. Itâ??s very well writtenâ??entertaining, evenâ??and filled with clear illustrations." â??Jack Ganssle, author and embedded system expert.

Low-Power Computer Vision

Low-Power Computer Vision PDF Author: George K. Thiruvathukal
Publisher: CRC Press
ISBN: 1000540960
Category : Computers
Languages : en
Pages : 395

Get Book Here

Book Description
Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.

TensorFlow Machine Learning Projects

TensorFlow Machine Learning Projects PDF Author: Ankit Jain
Publisher: Packt Publishing Ltd
ISBN: 1789132401
Category : Computers
Languages : en
Pages : 311

Get Book Here

Book Description
Implement TensorFlow's offerings such as TensorBoard, TensorFlow.js, TensorFlow Probability, and TensorFlow Lite to build smart automation projects Key FeaturesUse machine learning and deep learning principles to build real-world projectsGet to grips with TensorFlow's impressive range of module offeringsImplement projects on GANs, reinforcement learning, and capsule networkBook Description TensorFlow has transformed the way machine learning is perceived. TensorFlow Machine Learning Projects teaches you how to exploit the benefits—simplicity, efficiency, and flexibility—of using TensorFlow in various real-world projects. With the help of this book, you’ll not only learn how to build advanced projects using different datasets but also be able to tackle common challenges using a range of libraries from the TensorFlow ecosystem. To start with, you’ll get to grips with using TensorFlow for machine learning projects; you’ll explore a wide range of projects using TensorForest and TensorBoard for detecting exoplanets, TensorFlow.js for sentiment analysis, and TensorFlow Lite for digit classification. As you make your way through the book, you’ll build projects in various real-world domains, incorporating natural language processing (NLP), the Gaussian process, autoencoders, recommender systems, and Bayesian neural networks, along with trending areas such as Generative Adversarial Networks (GANs), capsule networks, and reinforcement learning. You’ll learn how to use the TensorFlow on Spark API and GPU-accelerated computing with TensorFlow to detect objects, followed by how to train and develop a recurrent neural network (RNN) model to generate book scripts. By the end of this book, you’ll have gained the required expertise to build full-fledged machine learning projects at work. What you will learnUnderstand the TensorFlow ecosystem using various datasets and techniquesCreate recommendation systems for quality product recommendationsBuild projects using CNNs, NLP, and Bayesian neural networksPlay Pac-Man using deep reinforcement learningDeploy scalable TensorFlow-based machine learning systemsGenerate your own book script using RNNsWho this book is for TensorFlow Machine Learning Projects is for you if you are a data analyst, data scientist, machine learning professional, or deep learning enthusiast with basic knowledge of TensorFlow. This book is also for you if you want to build end-to-end projects in the machine learning domain using supervised, unsupervised, and reinforcement learning techniques

Beginning Artificial Intelligence with the Raspberry Pi

Beginning Artificial Intelligence with the Raspberry Pi PDF Author: Donald J. Norris
Publisher: Apress
ISBN: 1484227433
Category : Computers
Languages : en
Pages : 379

Get Book Here

Book Description
Gain a gentle introduction to the world of Artificial Intelligence (AI) using the Raspberry Pi as the computing platform. Most of the major AI topics will be explored, including expert systems, machine learning both shallow and deep, fuzzy logic control, and more! AI in action will be demonstrated using the Python language on the Raspberry Pi. The Prolog language will also be introduced and used to demonstrate fundamental AI concepts. In addition, the Wolfram language will be used as part of the deep machine learning demonstrations. A series of projects will walk you through how to implement AI concepts with the Raspberry Pi. Minimal expense is needed for the projects as only a few sensors and actuators will be required. Beginners and hobbyists can jump right in to creating AI projects with the Raspberry PI using this book. What You'll Learn What AI is and—as importantly—what it is not Inference and expert systems Machine learning both shallow and deep Fuzzy logic and how to apply to an actual control system When AI might be appropriate to include in a system Constraints and limitations of the Raspberry Pi AI implementation Who This Book Is For Hobbyists, makers, engineers involved in designing autonomous systems and wanting to gain an education in fundamental AI concepts, and non-technical readers who want to understand what AI is and how it might affect their lives.

Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing

Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing PDF Author: Velayutham, Sathiyamoorthi
Publisher: IGI Global
ISBN: 1799831132
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
In today’s market, emerging technologies are continually assisting in common workplace practices as companies and organizations search for innovative ways to solve modern issues that arise. Prevalent applications including internet of things, big data, and cloud computing all have noteworthy benefits, but issues remain when separately integrating them into the professional practices. Significant research is needed on converging these systems and leveraging each of their advantages in order to find solutions to real-time problems that still exist. Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing is a pivotal reference source that provides vital research on the relation between these technologies and the impact they collectively have in solving real-world challenges. While highlighting topics such as cloud-based analytics, intelligent algorithms, and information security, this publication explores current issues that remain when attempting to implement these systems as well as the specific applications IoT, big data, and cloud computing have in various professional sectors. This book is ideally designed for academicians, researchers, developers, computer scientists, IT professionals, practitioners, scholars, students, and engineers seeking research on the integration of emerging technologies to solve modern societal issues.

Practical Rust Projects

Practical Rust Projects PDF Author: Shing Lyu
Publisher: Apress
ISBN: 1484255992
Category : Computers
Languages : en
Pages : 265

Get Book Here

Book Description
Go beyond the basics and build complete applications using the Rust programming language. The applications in this book include a high-performance web client, a microcontroller (for a robot, for example), a game, an app that runs on Android, and an application that incorporates AI and machine learning. Each chapter will be organized in the following format: what this kind of application looks like; requirements and user stories of our example program; an introduction to the Rust libraries used; the actual implementation of the example program, including common pitfalls and their solutions; and a brief comparison of libraries for building each application, if there is no clear winner. Practical Rust Projects will open your eyes to the world of practical applications of Rust. After reading the book, you will be able to apply your Rust knowledge to build your own projects. What You Will Learn Write Rust code that runs on microcontrollers Build a 2D game Create Rust-based mobile Android applications Use Rust to build AI and machine learning applications Who This Book Is For Someone with basic Rust knowledge, wishing to learn more about how to apply Rust in a real-world scenario.

Embedded Systems with Arm Cortex-M Microcontrollers in Assembly Language and C: Third Edition

Embedded Systems with Arm Cortex-M Microcontrollers in Assembly Language and C: Third Edition PDF Author: Yifeng Zhu
Publisher:
ISBN: 9780982692660
Category : Computers
Languages : en
Pages : 736

Get Book Here

Book Description
This book introduces basic programming of ARM Cortex chips in assembly language and the fundamentals of embedded system design. It presents data representations, assembly instruction syntax, implementing basic controls of C language at the assembly level, and instruction encoding and decoding. The book also covers many advanced components of embedded systems, such as software and hardware interrupts, general purpose I/O, LCD driver, keypad interaction, real-time clock, stepper motor control, PWM input and output, digital input capture, direct memory access (DMA), digital and analog conversion, and serial communication (USART, I2C, SPI, and USB).