Deep Learning Models explored with help of Python Programming

Deep Learning Models explored with help of Python Programming PDF Author: Editor IJSMI
Publisher: International Journal of Statistics and Medical Informatics
ISBN:
Category : Young Adult Nonfiction
Languages : en
Pages : 102

Get Book Here

Book Description
This is the second book in the Deep Learning models series by the author. Deep learning models are widely used in different fields due to its capability to handle large and complex datasets and produce the desired results with more accuracy at a greater speed. In Deep learning models, features are selected automatically through the iterative process wherein the model learns the features by going deep into the dataset and selects the features to be modeled. In the traditional models the features of the dataset needs to be specified in advance. The Deep Learning algorithms are derived from Artificial Neural Network concepts and it is a part of broader Machine Learning Models. The book starts with the Introduction part which is adopted from Author’s Deep Learning Models and its application: An overview with the help of R software book and move on to the Python’s important data processing packages such Numpy, and Pandas. Book then explores the Deep Learning models with the help of packages such as Pytorch, Tensor Flow and Keras and their applications in image processing, stock market prediction, recommender systems and natural language processing. Editor International Journal of Statistics and Medical Informatics www.ijsmi.com/book.php ISBN: 9798558877953 E-Books: https://www.amazon.com/dp/B08MQTM1ZP Paperbacks: https://www.amazon.com/dp/B08MSQ3R8R

Deep Learning Models explored with help of Python Programming

Deep Learning Models explored with help of Python Programming PDF Author: Editor IJSMI
Publisher: International Journal of Statistics and Medical Informatics
ISBN:
Category : Young Adult Nonfiction
Languages : en
Pages : 102

Get Book Here

Book Description
This is the second book in the Deep Learning models series by the author. Deep learning models are widely used in different fields due to its capability to handle large and complex datasets and produce the desired results with more accuracy at a greater speed. In Deep learning models, features are selected automatically through the iterative process wherein the model learns the features by going deep into the dataset and selects the features to be modeled. In the traditional models the features of the dataset needs to be specified in advance. The Deep Learning algorithms are derived from Artificial Neural Network concepts and it is a part of broader Machine Learning Models. The book starts with the Introduction part which is adopted from Author’s Deep Learning Models and its application: An overview with the help of R software book and move on to the Python’s important data processing packages such Numpy, and Pandas. Book then explores the Deep Learning models with the help of packages such as Pytorch, Tensor Flow and Keras and their applications in image processing, stock market prediction, recommender systems and natural language processing. Editor International Journal of Statistics and Medical Informatics www.ijsmi.com/book.php ISBN: 9798558877953 E-Books: https://www.amazon.com/dp/B08MQTM1ZP Paperbacks: https://www.amazon.com/dp/B08MSQ3R8R

Deep Learning with Python

Deep Learning with Python PDF Author: Francois Chollet
Publisher: Simon and Schuster
ISBN: 1638352046
Category : Computers
Languages : en
Pages : 620

Get Book Here

Book Description
Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance

Python Deep Learning

Python Deep Learning PDF Author: Ivan Vasilev
Publisher: Packt Publishing Ltd
ISBN: 1789349702
Category : Computers
Languages : en
Pages : 379

Get Book Here

Book Description
Learn advanced state-of-the-art deep learning techniques and their applications using popular Python libraries Key Features Build a strong foundation in neural networks and deep learning with Python libraries Explore advanced deep learning techniques and their applications across computer vision and NLP Learn how a computer can navigate in complex environments with reinforcement learning Book DescriptionWith the surge in artificial intelligence in applications catering to both business and consumer needs, deep learning is more important than ever for meeting current and future market demands. With this book, you’ll explore deep learning, and learn how to put machine learning to use in your projects. This second edition of Python Deep Learning will get you up to speed with deep learning, deep neural networks, and how to train them with high-performance algorithms and popular Python frameworks. You’ll uncover different neural network architectures, such as convolutional networks, recurrent neural networks, long short-term memory (LSTM) networks, and capsule networks. You’ll also learn how to solve problems in the fields of computer vision, natural language processing (NLP), and speech recognition. You'll study generative model approaches such as variational autoencoders and Generative Adversarial Networks (GANs) to generate images. As you delve into newly evolved areas of reinforcement learning, you’ll gain an understanding of state-of-the-art algorithms that are the main components behind popular games Go, Atari, and Dota. By the end of the book, you will be well-versed with the theory of deep learning along with its real-world applications.What you will learn Grasp the mathematical theory behind neural networks and deep learning processes Investigate and resolve computer vision challenges using convolutional networks and capsule networks Solve generative tasks using variational autoencoders and Generative Adversarial Networks Implement complex NLP tasks using recurrent networks (LSTM and GRU) and attention models Explore reinforcement learning and understand how agents behave in a complex environment Get up to date with applications of deep learning in autonomous vehicles Who this book is for This book is for data science practitioners, machine learning engineers, and those interested in deep learning who have a basic foundation in machine learning and some Python programming experience. A background in mathematics and conceptual understanding of calculus and statistics will help you gain maximum benefit from this book.

Mathematics for Machine Learning

Mathematics for Machine Learning PDF Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Applied Predictive Modeling

Applied Predictive Modeling PDF Author: Max Kuhn
Publisher: Springer Science & Business Media
ISBN: 1461468493
Category : Medical
Languages : en
Pages : 595

Get Book Here

Book Description
Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.

Practical Deep Learning

Practical Deep Learning PDF Author: Ronald T. Kneusel
Publisher: No Starch Press
ISBN: 1718500742
Category : Computers
Languages : en
Pages : 463

Get Book Here

Book Description
Practical Deep Learning teaches total beginners how to build the datasets and models needed to train neural networks for your own DL projects. If you’ve been curious about artificial intelligence and machine learning but didn’t know where to start, this is the book you’ve been waiting for. Focusing on the subfield of machine learning known as deep learning, it explains core concepts and gives you the foundation you need to start building your own models. Rather than simply outlining recipes for using existing toolkits, Practical Deep Learning teaches you the why of deep learning and will inspire you to explore further. All you need is basic familiarity with computer programming and high school math—the book will cover the rest. After an introduction to Python, you’ll move through key topics like how to build a good training dataset, work with the scikit-learn and Keras libraries, and evaluate your models’ performance. You’ll also learn: How to use classic machine learning models like k-Nearest Neighbors, Random Forests, and Support Vector Machines How neural networks work and how they’re trained How to use convolutional neural networks How to develop a successful deep learning model from scratch You’ll conduct experiments along the way, building to a final case study that incorporates everything you’ve learned. The perfect introduction to this dynamic, ever-expanding field, Practical Deep Learning will give you the skills and confidence to dive into your own machine learning projects.

Python Deep Learning Projects

Python Deep Learning Projects PDF Author: Matthew Lamons
Publisher: Packt Publishing Ltd
ISBN: 1789134757
Category : Computers
Languages : en
Pages : 465

Get Book Here

Book Description
Insightful projects to master deep learning and neural network architectures using Python and Keras Key FeaturesExplore deep learning across computer vision, natural language processing (NLP), and image processingDiscover best practices for the training of deep neural networks and their deploymentAccess popular deep learning models as well as widely used neural network architecturesBook Description Deep learning has been gradually revolutionizing every field of artificial intelligence, making application development easier. Python Deep Learning Projects imparts all the knowledge needed to implement complex deep learning projects in the field of computational linguistics and computer vision. Each of these projects is unique, helping you progressively master the subject. You’ll learn how to implement a text classifier system using a recurrent neural network (RNN) model and optimize it to understand the shortcomings you might experience while implementing a simple deep learning system. Similarly, you’ll discover how to develop various projects, including word vector representation, open domain question answering, and building chatbots using seq-to-seq models and language modeling. In addition to this, you’ll cover advanced concepts, such as regularization, gradient clipping, gradient normalization, and bidirectional RNNs, through a series of engaging projects. By the end of this book, you will have gained knowledge to develop your own deep learning systems in a straightforward way and in an efficient way What you will learnSet up a deep learning development environment on Amazon Web Services (AWS)Apply GPU-powered instances as well as the deep learning AMIImplement seq-to-seq networks for modeling natural language processing (NLP)Develop an end-to-end speech recognition systemBuild a system for pixel-wise semantic labeling of an imageCreate a system that generates images and their regionsWho this book is for Python Deep Learning Projects is for you if you want to get insights into deep learning, data science, and artificial intelligence. This book is also for those who want to break into deep learning and develop their own AI projects. It is assumed that you have sound knowledge of Python programming

Python Machine Learning Projects

Python Machine Learning Projects PDF Author: Lisa Tagliaferri
Publisher: DigitalOcean
ISBN: 099977302X
Category : Computers
Languages : en
Pages : 152

Get Book Here

Book Description
As machine learning is increasingly leveraged to find patterns, conduct analysis, and make decisions — sometimes without final input from humans who may be impacted by these findings — it is crucial to invest in bringing more stakeholders into the fold. This book of Python projects in machine learning tries to do just that: to equip the developers of today and tomorrow with tools they can use to better understand, evaluate, and shape machine learning to help ensure that it is serving us all. This book will set you up with a Python programming environment if you don’t have one already, then provide you with a conceptual understanding of machine learning in the chapter “An Introduction to Machine Learning.” What follows next are three Python machine learning projects. They will help you create a machine learning classifier, build a neural network to recognize handwritten digits, and give you a background in deep reinforcement learning through building a bot for Atari.

Deep Learning with Python

Deep Learning with Python PDF Author: Nikhil Ketkar
Publisher: Apress
ISBN: 9781484253632
Category : Computers
Languages : en
Pages : 306

Get Book Here

Book Description
Master the practical aspects of implementing deep learning solutions with PyTorch, using a hands-on approach to understanding both theory and practice. This updated edition will prepare you for applying deep learning to real world problems with a sound theoretical foundation and practical know-how with PyTorch, a platform developed by Facebook’s Artificial Intelligence Research Group. You'll start with a perspective on how and why deep learning with PyTorch has emerged as an path-breaking framework with a set of tools and techniques to solve real-world problems. Next, the book will ground you with the mathematical fundamentals of linear algebra, vector calculus, probability and optimization. Having established this foundation, you'll move on to key components and functionality of PyTorch including layers, loss functions and optimization algorithms. You'll also gain an understanding of Graphical Processing Unit (GPU) based computation, which is essential for training deep learning models. All the key architectures in deep learning are covered, including feedforward networks, convolution neural networks, recurrent neural networks, long short-term memory networks, autoencoders and generative adversarial networks. Backed by a number of tricks of the trade for training and optimizing deep learning models, this edition of Deep Learning with Python explains the best practices in taking these models to production with PyTorch. What You'll Learn Review machine learning fundamentals such as overfitting, underfitting, and regularization. Understand deep learning fundamentals such as feed-forward networks, convolution neural networks, recurrent neural networks, automatic differentiation, and stochastic gradient descent. Apply in-depth linear algebra with PyTorch Explore PyTorch fundamentals and its building blocks Work with tuning and optimizing models Who This Book Is For Beginners with a working knowledge of Python who want to understand Deep Learning in a practical, hands-on manner.

Grokking Deep Learning

Grokking Deep Learning PDF Author: Andrew W. Trask
Publisher: Simon and Schuster
ISBN: 163835720X
Category : Computers
Languages : en
Pages : 492

Get Book Here

Book Description
Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide