Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 572
Book Description
Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.
Deep Learning for Time Series Forecasting
Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 572
Book Description
Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 572
Book Description
Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.
Time Series Forecasting using Deep Learning
Author: Ivan Gridin
Publisher: BPB Publications
ISBN: 9391392571
Category : Computers
Languages : en
Pages : 354
Book Description
Explore the infinite possibilities offered by Artificial Intelligence and Neural Networks KEY FEATURES ● Covers numerous concepts, techniques, best practices and troubleshooting tips by community experts. ● Includes practical demonstration of robust deep learning prediction models with exciting use-cases. ● Covers the use of the most powerful research toolkit such as Python, PyTorch, and Neural Network Intelligence. DESCRIPTION This book is amid at teaching the readers how to apply the deep learning techniques to the time series forecasting challenges and how to build prediction models using PyTorch. The readers will learn the fundamentals of PyTorch in the early stages of the book. Next, the time series forecasting is covered in greater depth after the programme has been developed. You will try to use machine learning to identify the patterns that can help us forecast the future results. It covers methodologies such as Recurrent Neural Network, Encoder-decoder model, and Temporal Convolutional Network, all of which are state-of-the-art neural network architectures. Furthermore, for good measure, we have also introduced the neural architecture search, which automates searching for an ideal neural network design for a certain task. Finally by the end of the book, readers would be able to solve complex real-world prediction issues by applying the models and strategies learnt throughout the course of the book. This book also offers another great way of mastering deep learning and its various techniques. WHAT YOU WILL LEARN ● Work with the Encoder-Decoder concept and Temporal Convolutional Network mechanics. ● Learn the basics of neural architecture search with Neural Network Intelligence. ● Combine standard statistical analysis methods with deep learning approaches. ● Automate the search for optimal predictive architecture. ● Design your custom neural network architecture for specific tasks. ● Apply predictive models to real-world problems of forecasting stock quotes, weather, and natural processes. WHO THIS BOOK IS FOR This book is written for engineers, data scientists, and stock traders who want to build time series forecasting programs using deep learning. Possessing some familiarity of Python is sufficient, while a basic understanding of machine learning is desirable but not needed. TABLE OF CONTENTS 1. Time Series Problems and Challenges 2. Deep Learning with PyTorch 3. Time Series as Deep Learning Problem 4. Recurrent Neural Networks 5. Advanced Forecasting Models 6. PyTorch Model Tuning with Neural Network Intelligence 7. Applying Deep Learning to Real-world Forecasting Problems 8. PyTorch Forecasting Package 9. What is Next?
Publisher: BPB Publications
ISBN: 9391392571
Category : Computers
Languages : en
Pages : 354
Book Description
Explore the infinite possibilities offered by Artificial Intelligence and Neural Networks KEY FEATURES ● Covers numerous concepts, techniques, best practices and troubleshooting tips by community experts. ● Includes practical demonstration of robust deep learning prediction models with exciting use-cases. ● Covers the use of the most powerful research toolkit such as Python, PyTorch, and Neural Network Intelligence. DESCRIPTION This book is amid at teaching the readers how to apply the deep learning techniques to the time series forecasting challenges and how to build prediction models using PyTorch. The readers will learn the fundamentals of PyTorch in the early stages of the book. Next, the time series forecasting is covered in greater depth after the programme has been developed. You will try to use machine learning to identify the patterns that can help us forecast the future results. It covers methodologies such as Recurrent Neural Network, Encoder-decoder model, and Temporal Convolutional Network, all of which are state-of-the-art neural network architectures. Furthermore, for good measure, we have also introduced the neural architecture search, which automates searching for an ideal neural network design for a certain task. Finally by the end of the book, readers would be able to solve complex real-world prediction issues by applying the models and strategies learnt throughout the course of the book. This book also offers another great way of mastering deep learning and its various techniques. WHAT YOU WILL LEARN ● Work with the Encoder-Decoder concept and Temporal Convolutional Network mechanics. ● Learn the basics of neural architecture search with Neural Network Intelligence. ● Combine standard statistical analysis methods with deep learning approaches. ● Automate the search for optimal predictive architecture. ● Design your custom neural network architecture for specific tasks. ● Apply predictive models to real-world problems of forecasting stock quotes, weather, and natural processes. WHO THIS BOOK IS FOR This book is written for engineers, data scientists, and stock traders who want to build time series forecasting programs using deep learning. Possessing some familiarity of Python is sufficient, while a basic understanding of machine learning is desirable but not needed. TABLE OF CONTENTS 1. Time Series Problems and Challenges 2. Deep Learning with PyTorch 3. Time Series as Deep Learning Problem 4. Recurrent Neural Networks 5. Advanced Forecasting Models 6. PyTorch Model Tuning with Neural Network Intelligence 7. Applying Deep Learning to Real-world Forecasting Problems 8. PyTorch Forecasting Package 9. What is Next?
Machine Learning for Time Series Forecasting with Python
Author: Francesca Lazzeri
Publisher: John Wiley & Sons
ISBN: 111968238X
Category : Computers
Languages : en
Pages : 224
Book Description
Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models’ performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling.
Publisher: John Wiley & Sons
ISBN: 111968238X
Category : Computers
Languages : en
Pages : 224
Book Description
Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models’ performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling.
Time Series Forecasting in Python
Author: Marco Peixeiro
Publisher: Simon and Schuster
ISBN: 1638351473
Category : Computers
Languages : en
Pages : 454
Book Description
Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches for time series forecasting. In Time Series Forecasting in Python you will learn how to: Recognize a time series forecasting problem and build a performant predictive model Create univariate forecasting models that account for seasonal effects and external variables Build multivariate forecasting models to predict many time series at once Leverage large datasets by using deep learning for forecasting time series Automate the forecasting process Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You’ll explore interesting real-world datasets like Google’s daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow. About the technology You can predict the future—with a little help from Python, deep learning, and time series data! Time series forecasting is a technique for modeling time-centric data to identify upcoming events. New Python libraries and powerful deep learning tools make accurate time series forecasts easier than ever before. About the book Time Series Forecasting in Python teaches you how to get immediate, meaningful predictions from time-based data such as logs, customer analytics, and other event streams. In this accessible book, you’ll learn statistical and deep learning methods for time series forecasting, fully demonstrated with annotated Python code. Develop your skills with projects like predicting the future volume of drug prescriptions, and you’ll soon be ready to build your own accurate, insightful forecasts. What's inside Create models for seasonal effects and external variables Multivariate forecasting models to predict multiple time series Deep learning for large datasets Automate the forecasting process About the reader For data scientists familiar with Python and TensorFlow. About the author Marco Peixeiro is a seasoned data science instructor who has worked as a data scientist for one of Canada’s largest banks. Table of Contents PART 1 TIME WAITS FOR NO ONE 1 Understanding time series forecasting 2 A naive prediction of the future 3 Going on a random walk PART 2 FORECASTING WITH STATISTICAL MODELS 4 Modeling a moving average process 5 Modeling an autoregressive process 6 Modeling complex time series 7 Forecasting non-stationary time series 8 Accounting for seasonality 9 Adding external variables to our model 10 Forecasting multiple time series 11 Capstone: Forecasting the number of antidiabetic drug prescriptions in Australia PART 3 LARGE-SCALE FORECASTING WITH DEEP LEARNING 12 Introducing deep learning for time series forecasting 13 Data windowing and creating baselines for deep learning 14 Baby steps with deep learning 15 Remembering the past with LSTM 16 Filtering a time series with CNN 17 Using predictions to make more predictions 18 Capstone: Forecasting the electric power consumption of a household PART 4 AUTOMATING FORECASTING AT SCALE 19 Automating time series forecasting with Prophet 20 Capstone: Forecasting the monthly average retail price of steak in Canada 21 Going above and beyond
Publisher: Simon and Schuster
ISBN: 1638351473
Category : Computers
Languages : en
Pages : 454
Book Description
Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches for time series forecasting. In Time Series Forecasting in Python you will learn how to: Recognize a time series forecasting problem and build a performant predictive model Create univariate forecasting models that account for seasonal effects and external variables Build multivariate forecasting models to predict many time series at once Leverage large datasets by using deep learning for forecasting time series Automate the forecasting process Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You’ll explore interesting real-world datasets like Google’s daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow. About the technology You can predict the future—with a little help from Python, deep learning, and time series data! Time series forecasting is a technique for modeling time-centric data to identify upcoming events. New Python libraries and powerful deep learning tools make accurate time series forecasts easier than ever before. About the book Time Series Forecasting in Python teaches you how to get immediate, meaningful predictions from time-based data such as logs, customer analytics, and other event streams. In this accessible book, you’ll learn statistical and deep learning methods for time series forecasting, fully demonstrated with annotated Python code. Develop your skills with projects like predicting the future volume of drug prescriptions, and you’ll soon be ready to build your own accurate, insightful forecasts. What's inside Create models for seasonal effects and external variables Multivariate forecasting models to predict multiple time series Deep learning for large datasets Automate the forecasting process About the reader For data scientists familiar with Python and TensorFlow. About the author Marco Peixeiro is a seasoned data science instructor who has worked as a data scientist for one of Canada’s largest banks. Table of Contents PART 1 TIME WAITS FOR NO ONE 1 Understanding time series forecasting 2 A naive prediction of the future 3 Going on a random walk PART 2 FORECASTING WITH STATISTICAL MODELS 4 Modeling a moving average process 5 Modeling an autoregressive process 6 Modeling complex time series 7 Forecasting non-stationary time series 8 Accounting for seasonality 9 Adding external variables to our model 10 Forecasting multiple time series 11 Capstone: Forecasting the number of antidiabetic drug prescriptions in Australia PART 3 LARGE-SCALE FORECASTING WITH DEEP LEARNING 12 Introducing deep learning for time series forecasting 13 Data windowing and creating baselines for deep learning 14 Baby steps with deep learning 15 Remembering the past with LSTM 16 Filtering a time series with CNN 17 Using predictions to make more predictions 18 Capstone: Forecasting the electric power consumption of a household PART 4 AUTOMATING FORECASTING AT SCALE 19 Automating time series forecasting with Prophet 20 Capstone: Forecasting the monthly average retail price of steak in Canada 21 Going above and beyond
Machine Learning for Time-Series with Python
Author: Ben Auffarth
Publisher: Packt Publishing Ltd
ISBN: 1801816107
Category : Computers
Languages : en
Pages : 371
Book Description
Get better insights from time-series data and become proficient in model performance analysis Key FeaturesExplore popular and modern machine learning methods including the latest online and deep learning algorithmsLearn to increase the accuracy of your predictions by matching the right model with the right problemMaster time series via real-world case studies on operations management, digital marketing, finance, and healthcareBook Description The Python time-series ecosystem is huge and often quite hard to get a good grasp on, especially for time-series since there are so many new libraries and new models. This book aims to deepen your understanding of time series by providing a comprehensive overview of popular Python time-series packages and help you build better predictive systems. Machine Learning for Time-Series with Python starts by re-introducing the basics of time series and then builds your understanding of traditional autoregressive models as well as modern non-parametric models. By observing practical examples and the theory behind them, you will become confident with loading time-series datasets from any source, deep learning models like recurrent neural networks and causal convolutional network models, and gradient boosting with feature engineering. This book will also guide you in matching the right model to the right problem by explaining the theory behind several useful models. You'll also have a look at real-world case studies covering weather, traffic, biking, and stock market data. By the end of this book, you should feel at home with effectively analyzing and applying machine learning methods to time-series. What you will learnUnderstand the main classes of time series and learn how to detect outliers and patternsChoose the right method to solve time-series problemsCharacterize seasonal and correlation patterns through autocorrelation and statistical techniquesGet to grips with time-series data visualizationUnderstand classical time-series models like ARMA and ARIMAImplement deep learning models, like Gaussian processes, transformers, and state-of-the-art machine learning modelsBecome familiar with many libraries like Prophet, XGboost, and TensorFlowWho this book is for This book is ideal for data analysts, data scientists, and Python developers who want instantly useful and practical recipes to implement today, and a comprehensive reference book for tomorrow. Basic knowledge of the Python Programming language is a must, while familiarity with statistics will help you get the most out of this book.
Publisher: Packt Publishing Ltd
ISBN: 1801816107
Category : Computers
Languages : en
Pages : 371
Book Description
Get better insights from time-series data and become proficient in model performance analysis Key FeaturesExplore popular and modern machine learning methods including the latest online and deep learning algorithmsLearn to increase the accuracy of your predictions by matching the right model with the right problemMaster time series via real-world case studies on operations management, digital marketing, finance, and healthcareBook Description The Python time-series ecosystem is huge and often quite hard to get a good grasp on, especially for time-series since there are so many new libraries and new models. This book aims to deepen your understanding of time series by providing a comprehensive overview of popular Python time-series packages and help you build better predictive systems. Machine Learning for Time-Series with Python starts by re-introducing the basics of time series and then builds your understanding of traditional autoregressive models as well as modern non-parametric models. By observing practical examples and the theory behind them, you will become confident with loading time-series datasets from any source, deep learning models like recurrent neural networks and causal convolutional network models, and gradient boosting with feature engineering. This book will also guide you in matching the right model to the right problem by explaining the theory behind several useful models. You'll also have a look at real-world case studies covering weather, traffic, biking, and stock market data. By the end of this book, you should feel at home with effectively analyzing and applying machine learning methods to time-series. What you will learnUnderstand the main classes of time series and learn how to detect outliers and patternsChoose the right method to solve time-series problemsCharacterize seasonal and correlation patterns through autocorrelation and statistical techniquesGet to grips with time-series data visualizationUnderstand classical time-series models like ARMA and ARIMAImplement deep learning models, like Gaussian processes, transformers, and state-of-the-art machine learning modelsBecome familiar with many libraries like Prophet, XGboost, and TensorFlowWho this book is for This book is ideal for data analysts, data scientists, and Python developers who want instantly useful and practical recipes to implement today, and a comprehensive reference book for tomorrow. Basic knowledge of the Python Programming language is a must, while familiarity with statistics will help you get the most out of this book.
Introduction to Time Series Forecasting With Python
Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Mathematics
Languages : en
Pages : 359
Book Description
Time series forecasting is different from other machine learning problems. The key difference is the fixed sequence of observations and the constraints and additional structure this provides. In this Ebook, finally cut through the math and specialized methods for time series forecasting. Using clear explanations, standard Python libraries and step-by-step tutorials you will discover how to load and prepare data, evaluate model skill, and implement forecasting models for time series data.
Publisher: Machine Learning Mastery
ISBN:
Category : Mathematics
Languages : en
Pages : 359
Book Description
Time series forecasting is different from other machine learning problems. The key difference is the fixed sequence of observations and the constraints and additional structure this provides. In this Ebook, finally cut through the math and specialized methods for time series forecasting. Using clear explanations, standard Python libraries and step-by-step tutorials you will discover how to load and prepare data, evaluate model skill, and implement forecasting models for time series data.
Forecasting: principles and practice
Author: Rob J Hyndman
Publisher: OTexts
ISBN: 0987507117
Category : Business & Economics
Languages : en
Pages : 380
Book Description
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Publisher: OTexts
ISBN: 0987507117
Category : Business & Economics
Languages : en
Pages : 380
Book Description
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Practical Time Series Analysis
Author: Aileen Nielsen
Publisher: O'Reilly Media
ISBN: 1492041629
Category : Computers
Languages : en
Pages : 500
Book Description
Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance
Publisher: O'Reilly Media
ISBN: 1492041629
Category : Computers
Languages : en
Pages : 500
Book Description
Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance
Business Intelligence
Author: Marie-Aude Aufaure
Publisher: Springer
ISBN: 3642363180
Category : Business & Economics
Languages : en
Pages : 235
Book Description
To large organizations, business intelligence (BI) promises the capability of collecting and analyzing internal and external data to generate knowledge and value, thus providing decision support at the strategic, tactical, and operational levels. BI is now impacted by the “Big Data” phenomena and the evolution of society and users. In particular, BI applications must cope with additional heterogeneous (often Web-based) sources, e.g., from social networks, blogs, competitors’, suppliers’, or distributors’ data, governmental or NGO-based analysis and papers, or from research publications. In addition, they must be able to provide their results also on mobile devices, taking into account location-based or time-based environmental data. The lectures held at the Second European Business Intelligence Summer School (eBISS), which are presented here in an extended and refined format, cover not only established BI and BPM technologies, but extend into innovative aspects that are important in this new environment and for novel applications, e.g., machine learning, logic networks, graph mining, business semantics, large-scale data management and analysis, and multicriteria and collaborative decision making. Combining papers by leading researchers in the field, this volume equips the reader with the state-of-the-art background necessary for creating the future of BI. It also provides the reader with an excellent basis and many pointers for further research in this growing field.
Publisher: Springer
ISBN: 3642363180
Category : Business & Economics
Languages : en
Pages : 235
Book Description
To large organizations, business intelligence (BI) promises the capability of collecting and analyzing internal and external data to generate knowledge and value, thus providing decision support at the strategic, tactical, and operational levels. BI is now impacted by the “Big Data” phenomena and the evolution of society and users. In particular, BI applications must cope with additional heterogeneous (often Web-based) sources, e.g., from social networks, blogs, competitors’, suppliers’, or distributors’ data, governmental or NGO-based analysis and papers, or from research publications. In addition, they must be able to provide their results also on mobile devices, taking into account location-based or time-based environmental data. The lectures held at the Second European Business Intelligence Summer School (eBISS), which are presented here in an extended and refined format, cover not only established BI and BPM technologies, but extend into innovative aspects that are important in this new environment and for novel applications, e.g., machine learning, logic networks, graph mining, business semantics, large-scale data management and analysis, and multicriteria and collaborative decision making. Combining papers by leading researchers in the field, this volume equips the reader with the state-of-the-art background necessary for creating the future of BI. It also provides the reader with an excellent basis and many pointers for further research in this growing field.
Time Series Forecasting
Author: Francesca Lazzeri
Publisher: O'Reilly Media
ISBN: 9781492049661
Category :
Languages : en
Pages : 300
Book Description
Learn how to build and operationalize machine learning forecast models for your everyday projects. With this practical book, experienced and novice data scientists, business analysts, and AI developers will learn the steps necessary for building, training, and deploying time series forecasting models for their organizations. Time series data is an invaluable source of information used for future strategy and planning operations in several industries. From finance to education and health care, time series forecasting plays a major role in unlocking business insights with respect to time. During the past few decades, machine learning model-based forecasting has become popular in both the private and the public decision-making process.
Publisher: O'Reilly Media
ISBN: 9781492049661
Category :
Languages : en
Pages : 300
Book Description
Learn how to build and operationalize machine learning forecast models for your everyday projects. With this practical book, experienced and novice data scientists, business analysts, and AI developers will learn the steps necessary for building, training, and deploying time series forecasting models for their organizations. Time series data is an invaluable source of information used for future strategy and planning operations in several industries. From finance to education and health care, time series forecasting plays a major role in unlocking business insights with respect to time. During the past few decades, machine learning model-based forecasting has become popular in both the private and the public decision-making process.