Deep Learning for Data Architects

Deep Learning for Data Architects PDF Author: Shekhar Khandelwal
Publisher: BPB Publications
ISBN: 9355515391
Category : Computers
Languages : en
Pages : 251

Get Book Here

Book Description
A hands-on guide to building and deploying deep learning models with Python KEY FEATURES ● Acquire the skills to perform exploratory data analysis, uncover insights, and preprocess data for deep learning tasks. ● Build and train various types of neural networks, including Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). ● Gain hands-on experience by working on practical projects and applying deep learning techniques to real-world problems. DESCRIPTION “Deep Learning for Data Architects” is a comprehensive guide that bridges the gap between data architecture and deep learning. It provides a solid foundation in Python for data science and serves as a launchpad into the world of AI and deep learning. The book begins by addressing the challenges of transforming raw data into actionable insights. It provides a practical understanding of data handling and covers the construction of neural network-based predictive models. The book then explores specialized networks such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs). The book delves into the theory and practical aspects of these networks and offers Python code implementations for each. The final chapter of the book introduces Transformers, a revolutionary model that has had a significant impact on natural language processing (NLP). This chapter provides you with a thorough understanding of how Transformers work and includes Python code implementations. By the end of the book, you will be able to use deep learning to solve real-world problems. WHAT YOU WILL LEARN ● Develop a comprehensive understanding of neural networks' key concepts and principles. ● Gain proficiency in Python as you code and implement major deep-learning algorithms from scratch. ● Build and implement predictive models using various neural networks ● Learn how to use Transformers for complex NLP tasks ● Explore techniques to enhance the performance of your deep learning models. WHO THIS BOOK IS FOR This book is for anyone who is interested in a career in emerging technologies, such as artificial intelligence (AI), data analytics, machine learning, deep learning, and data science. It is a comprehensive guide that covers the fundamentals of these technologies, as well as the skills and knowledge that you need to succeed in this field. TABLE OF CONTENTS 1. Python for Data Science 2. Real-World Challenges for Data Professionals in Converting Data Into Insights 3. Build a Neural Network-Based Predictive Model 4. Convolutional Neural Networks 5. Optical Character Recognition 6. Object Detection 7. Image Segmentation 8. Recurrent Neural Networks 9. Generative Adversarial Networks 10. Transformers

Deep Learning for Data Architects

Deep Learning for Data Architects PDF Author: Shekhar Khandelwal
Publisher: BPB Publications
ISBN: 9355515391
Category : Computers
Languages : en
Pages : 251

Get Book Here

Book Description
A hands-on guide to building and deploying deep learning models with Python KEY FEATURES ● Acquire the skills to perform exploratory data analysis, uncover insights, and preprocess data for deep learning tasks. ● Build and train various types of neural networks, including Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). ● Gain hands-on experience by working on practical projects and applying deep learning techniques to real-world problems. DESCRIPTION “Deep Learning for Data Architects” is a comprehensive guide that bridges the gap between data architecture and deep learning. It provides a solid foundation in Python for data science and serves as a launchpad into the world of AI and deep learning. The book begins by addressing the challenges of transforming raw data into actionable insights. It provides a practical understanding of data handling and covers the construction of neural network-based predictive models. The book then explores specialized networks such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs). The book delves into the theory and practical aspects of these networks and offers Python code implementations for each. The final chapter of the book introduces Transformers, a revolutionary model that has had a significant impact on natural language processing (NLP). This chapter provides you with a thorough understanding of how Transformers work and includes Python code implementations. By the end of the book, you will be able to use deep learning to solve real-world problems. WHAT YOU WILL LEARN ● Develop a comprehensive understanding of neural networks' key concepts and principles. ● Gain proficiency in Python as you code and implement major deep-learning algorithms from scratch. ● Build and implement predictive models using various neural networks ● Learn how to use Transformers for complex NLP tasks ● Explore techniques to enhance the performance of your deep learning models. WHO THIS BOOK IS FOR This book is for anyone who is interested in a career in emerging technologies, such as artificial intelligence (AI), data analytics, machine learning, deep learning, and data science. It is a comprehensive guide that covers the fundamentals of these technologies, as well as the skills and knowledge that you need to succeed in this field. TABLE OF CONTENTS 1. Python for Data Science 2. Real-World Challenges for Data Professionals in Converting Data Into Insights 3. Build a Neural Network-Based Predictive Model 4. Convolutional Neural Networks 5. Optical Character Recognition 6. Object Detection 7. Image Segmentation 8. Recurrent Neural Networks 9. Generative Adversarial Networks 10. Transformers

Deep Learning for Computer Architects

Deep Learning for Computer Architects PDF Author: Brandon Reagen
Publisher: Springer Nature
ISBN: 3031017560
Category : Technology & Engineering
Languages : en
Pages : 109

Get Book Here

Book Description
Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.

Machine Learning

Machine Learning PDF Author: Phil Bernstein
Publisher: Routledge
ISBN: 1000600688
Category : Architecture
Languages : en
Pages : 173

Get Book Here

Book Description
‘The advent of machine learning-based AI systems demands that our industry does not just share toys, but builds a new sandbox in which to play with them.’ - Phil Bernstein The profession is changing. A new era is rapidly approaching when computers will not merely be instruments for data creation, manipulation and management, but, empowered by artificial intelligence, they will become agents of design themselves. Architects need a strategy for facing the opportunities and threats of these emergent capabilities or risk being left behind. Architecture’s best-known technologist, Phil Bernstein, provides that strategy. Divided into three key sections – Process, Relationships and Results – Machine Learning lays out an approach for anticipating, understanding and managing a world in which computers often augment, but may well also supplant, knowledge workers like architects. Armed with this insight, practices can take full advantage of the new technologies to future-proof their business. Features chapters on: Professionalism Tools and technologies Laws, policy and risk Delivery, means and methods Creating, consuming and curating data Value propositions and business models.

The Machine Learning Solutions Architect Handbook

The Machine Learning Solutions Architect Handbook PDF Author: David Ping
Publisher: Packt Publishing Ltd
ISBN: 1801070415
Category : Computers
Languages : en
Pages : 442

Get Book Here

Book Description
Build highly secure and scalable machine learning platforms to support the fast-paced adoption of machine learning solutions Key Features Explore different ML tools and frameworks to solve large-scale machine learning challenges in the cloud Build an efficient data science environment for data exploration, model building, and model training Learn how to implement bias detection, privacy, and explainability in ML model development Book DescriptionWhen equipped with a highly scalable machine learning (ML) platform, organizations can quickly scale the delivery of ML products for faster business value realization. There is a huge demand for skilled ML solutions architects in different industries, and this handbook will help you master the design patterns, architectural considerations, and the latest technology insights you’ll need to become one. You’ll start by understanding ML fundamentals and how ML can be applied to solve real-world business problems. Once you've explored a few leading problem-solving ML algorithms, this book will help you tackle data management and get the most out of ML libraries such as TensorFlow and PyTorch. Using open source technology such as Kubernetes/Kubeflow to build a data science environment and ML pipelines will be covered next, before moving on to building an enterprise ML architecture using Amazon Web Services (AWS). You’ll also learn about security and governance considerations, advanced ML engineering techniques, and how to apply bias detection, explainability, and privacy in ML model development. By the end of this book, you’ll be able to design and build an ML platform to support common use cases and architecture patterns like a true professional. What you will learn Apply ML methodologies to solve business problems Design a practical enterprise ML platform architecture Implement MLOps for ML workflow automation Build an end-to-end data management architecture using AWS Train large-scale ML models and optimize model inference latency Create a business application using an AI service and a custom ML model Use AWS services to detect data and model bias and explain models Who this book is for This book is for data scientists, data engineers, cloud architects, and machine learning enthusiasts who want to become machine learning solutions architects. You’ll need basic knowledge of the Python programming language, AWS, linear algebra, probability, and networking concepts before you get started with this handbook.

Introducing MLOps

Introducing MLOps PDF Author: Mark Treveil
Publisher: "O'Reilly Media, Inc."
ISBN: 1098116429
Category : Computers
Languages : en
Pages : 163

Get Book Here

Book Description
More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized

Solutions Architect's Handbook

Solutions Architect's Handbook PDF Author: Saurabh Shrivastava
Publisher: Packt Publishing Ltd
ISBN: 1835084362
Category : Computers
Languages : en
Pages : 579

Get Book Here

Book Description
From fundamentals and design patterns to the latest techniques such as generative AI, machine learning and cloud native architecture, gain all you need to be a pro Solutions Architect crafting secure and reliable AWS architecture. Key Features Hits all the key areas -Rajesh Sheth, VP, Elastic Block Store, AWS Offers the knowledge you need to succeed in the evolving landscape of tech architecture - Luis Lopez Soria, Senior Specialist Solutions Architect, Google A valuable resource for enterprise strategists looking to build resilient applications - Cher Simon, Principal Solutions Architect, AWS Book DescriptionMaster the art of solution architecture and excel as a Solutions Architect with the Solutions Architect's Handbook. Authored by seasoned AWS technology leaders Saurabh Shrivastav and Neelanjali Srivastav, this book goes beyond traditional certification guides, offering in-depth insights and advanced techniques to meet the specific needs and challenges of solutions architects today. This edition introduces exciting new features that keep you at the forefront of this evolving field. Large language models, generative AI, and innovations in deep learning are cutting-edge advancements shaping the future of technology. Topics such as cloud-native architecture, data engineering architecture, cloud optimization, mainframe modernization, and building cost-efficient and secure architectures remain important in today's landscape. This book provides coverage of these emerging and key technologies and walks you through solution architecture design from key principles, providing you with the knowledge you need to succeed as a Solutions Architect. It will also level up your soft skills, providing career-accelerating techniques to help you get ahead. Unlock the potential of cutting-edge technologies, gain practical insights from real-world scenarios, and enhance your solution architecture skills with the Solutions Architect's Handbook.What you will learn Explore various roles of a solutions architect in the enterprise Apply design principles for high-performance, cost-effective solutions Choose the best strategies to secure your architectures and boost availability Develop a DevOps and CloudOps mindset for collaboration, operational efficiency, and streamlined production Apply machine learning, data engineering, LLMs, and generative AI for improved security and performance Modernize legacy systems into cloud-native architectures with proven real-world strategies Master key solutions architect soft skills Who this book is for This book is for software developers, system engineers, DevOps engineers, architects, and team leaders who already work in the IT industry and aspire to become solutions architect professionals. Solutions architects who want to expand their skillset or get a better understanding of new technologies will also learn valuable new skills. To get started, you'll need a good understanding of the real-world software development process and some awareness of cloud technology.

Google Machine Learning and Generative AI for Solutions Architects

Google Machine Learning and Generative AI for Solutions Architects PDF Author: Kieran Kavanagh
Publisher: Packt Publishing Ltd
ISBN: 1803247029
Category : Computers
Languages : en
Pages : 552

Get Book Here

Book Description
Architect and run real-world AI/ML solutions at scale on Google Cloud, and discover best practices to address common industry challenges effectively Key Features Understand key concepts, from fundamentals through to complex topics, via a methodical approach Build real-world end-to-end MLOps solutions and generative AI applications on Google Cloud Get your hands on a code repository with over 20 hands-on projects for all stages of the ML model development lifecycle Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMost companies today are incorporating AI/ML into their businesses. Building and running apps utilizing AI/ML effectively is tough. This book, authored by a principal architect with about two decades of industry experience, who has led cross-functional teams to design, plan, implement, and govern enterprise cloud strategies, shows you exactly how to design and run AI/ML workloads successfully using years of experience from some of the world’s leading tech companies. You’ll get a clear understanding of essential fundamental AI/ML concepts, before moving on to complex topics with the help of examples and hands-on activities. This will help you explore advanced, cutting-edge AI/ML applications that address real-world use cases in today’s market. You’ll recognize the common challenges that companies face when implementing AI/ML workloads, and discover industry-proven best practices to overcome these. The chapters also teach you about the vast AI/ML landscape on Google Cloud and how to implement all the steps needed in a typical AI/ML project. You’ll use services such as BigQuery to prepare data; Vertex AI to train, deploy, monitor, and scale models in production; as well as MLOps to automate the entire process. By the end of this book, you will be able to unlock the full potential of Google Cloud's AI/ML offerings.What you will learn Build solutions with open-source offerings on Google Cloud, such as TensorFlow, PyTorch, and Spark Source, understand, and prepare data for ML workloads Build, train, and deploy ML models on Google Cloud Create an effective MLOps strategy and implement MLOps workloads on Google Cloud Discover common challenges in typical AI/ML projects and get solutions from experts Explore vector databases and their importance in Generative AI applications Uncover new Gen AI patterns such as Retrieval Augmented Generation (RAG), agents, and agentic workflows Who this book is for This book is for aspiring solutions architects looking to design and implement AI/ML solutions on Google Cloud. Although this book is suitable for both beginners and experienced practitioners, basic knowledge of Python and ML concepts is required. The book focuses on how AI/ML is used in the real world on Google Cloud. It briefly covers the basics at the beginning to establish a baseline for you, but it does not go into depth on the underlying mathematical concepts that are readily available in academic material.

Fundamentals Of Machine Learning & Artificial Intelligence

Fundamentals Of Machine Learning & Artificial Intelligence PDF Author: Dr. Abdul Rahiman Sheik
Publisher: Academic Guru Publishing House
ISBN: 8119338553
Category : Study Aids
Languages : en
Pages : 215

Get Book Here

Book Description
An upcoming game-changing technology that is disrupting the digital & computer technology age is artificial intelligence (AI). The whole of the information technology industry has adopted the use of machine learning & artificial algorithms in order to automate processes and provide robust outcomes. This book will familiarize you with the fundamental concepts and important phrases of the area of computer science that is seeing the most rapid expansion, as well as: An explanation of the many methods and algorithms that are utilized in machine learning, including why & how they are used as well as the tools that are necessary. Where to get data, which languages are most suited for machine learning, and what kinds of technologies are available to assist you with your task. This book provides an introduction to the foundations of contemporary artificial intelligence (AI), as well as coverage of recent developments in AI, such as Automated Planning, Information Retrieval, Intelligent Agents, Natural Language and Speech Processing, and Machine Vision. A short historical background can be found at the beginning of each chapter. This book explains, in terminology that is easy to understand, almost all of the components of artificial intelligence, including problem solving, search strategies, knowledge concepts, expert systems, and many more.

AWS for Solutions Architects

AWS for Solutions Architects PDF Author: Saurabh Shrivastava
Publisher: Packt Publishing Ltd
ISBN: 1803244828
Category : Computers
Languages : en
Pages : 693

Get Book Here

Book Description
Become a master Solutions Architect with this comprehensive guide, featuring cloud design patterns and real-world solutions for building scalable, secure, and highly available systems Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Gain expertise in automating, networking, migrating, and adopting cloud technologies using AWS Use streaming analytics, big data, AI/ML, IoT, quantum computing, and blockchain to transform your business Upskill yourself as an AWS solutions architect and explore details of the new AWS certification Book Description Are you excited to harness the power of AWS and unlock endless possibilities for your business? Look no further than the second edition of AWS for Solutions Architects! Packed with all-new content, this book is a must-have guide for anyone looking to build scalable cloud solutions and drive digital transformation using AWS. This updated edition offers in-depth guidance for building cloud solutions using AWS. It provides detailed information on AWS well-architected design pillars and cloud-native design patterns. You'll learn about networking in AWS, big data and streaming data processing, CloudOps, and emerging technologies such as machine learning, IoT, and blockchain. Additionally, the book includes new sections on storage in AWS, containers with ECS and EKS, and data lake patterns, providing you with valuable insights into designing industry-standard AWS architectures that meet your organization's technological and business requirements. Whether you're an experienced solutions architect or just getting started with AWS, this book has everything you need to confidently build cloud-native workloads and enterprise solutions. What you will learn Optimize your Cloud Workload using the AWS Well-Architected Framework Learn methods to migrate your workload using the AWS Cloud Adoption Framework Apply cloud automation at various layers of application workload to increase efficiency Build a landing zone in AWS and hybrid cloud setups with deep networking techniques Select reference architectures for business scenarios, like data lakes, containers, and serverless apps Apply emerging technologies in your architecture, including AI/ML, IoT and blockchain Who this book is for This book is for application and enterprise architects, developers, and operations engineers who want to become well versed with AWS architectural patterns, best practices, and advanced techniques to build scalable, secure, highly available, highly tolerant, and cost-effective solutions in the cloud. Existing AWS users are bound to learn the most, but it will also help those curious about how leveraging AWS can benefit their organization. Prior knowledge of any computing language is not needed, and there's little to no code. Prior experience in software architecture design will prove helpful.

Managing Unstructured Data: NoSQL Database Essentials

Managing Unstructured Data: NoSQL Database Essentials PDF Author: Anooja Ali
Publisher: MileStone Research Publications
ISBN: 9334113383
Category : Computers
Languages : en
Pages : 219

Get Book Here

Book Description
Managing Unstructured Data: NoSQL Database Essentials-is a reference book and guide for teaching and reading skills to college faculty and students. In Chapter1 the fundamentals of database and relational data base are discussed. This chapter helps students to understand data management concepts by data modelling, schema design, data storage and retrieval. This chapter includes the foundational skills that are applicable across various industries and provides a stepping stone for further specialization and career development. The chapter 2 is all about unstructured data. Varying methods for managing, analysing, and storing data are needed for varying levels of organization and complexity, which are represented by structured, unstructured, and semi-structured data. This chapter provides a platform for students to understand the transition from structured to unstructured data in terms of data management and analysis and it is a pivotal aspect of modern data management. In chapter 3 concepts of NoSQL data base and the major differences with SQL & Relational data bases are highlighted. This chapter explains the adoptions of NoSQL with flexible schema, scalability, high performance and support for distributed architecture. Chapter 4 is all about NoSQL databases, or "Not Only SQL" databases which represent a diverse set of database technologies designed to address specific challenges not well served by traditional relational databases. A brief overview of the main types of NoSQL databases are discussed here. The four basic data models such as key-value pairs, document-oriented, columnar, and graph-based structures are represented in this chapter. Information on popular NoSQL database technologies is given in chapter 5. Details of technologies like Apache HBase, Apache CouchDB, Neo4j, Apache Cassandra and their comparison are also provided here. It includes the distributed architecture with fault tolerance, high availability, and disaster recovery capabilities for ensuring data integrity and business continuity. Chapter 6 discusses the overview of Mongo DB which is a document-oriented NoSQL database known for its flexibility, scalability, and ease of use. The features of Mongo DB including document store, MongoDB protocol, horizontal scalability, cross platform compatibility, replication and sharding are also covered here. Chapter 7 deals with Concurrency control in databases. It discusses about the methods to obtain concurrency in structured data, and then in unstructured data, challenges in concurrency control for unstructured data, commits in transaction and the different isolation levels. Chapter 8 discusses on how unstructured data are used in big data processing. It includes Query processing performance evaluation in big data systems, the types od dirty data. Data cleansing is explained in detail with the steps in cleansing, exploratory data analysis, and data visualization. Hope this book on Managing Unstructured Data: NoSQL Database Essentials will provide a handy and useful reference book for teachers and students on Unstructured Database.