Author: Walter R. Paczkowski
Publisher: Routledge
ISBN: 0429663315
Category : Business & Economics
Languages : en
Pages : 304
Book Description
This book presents and develops the deep data analytics for providing the information needed for successful new product development. Deep Data Analytics for New Product Development has a simple theme: information about what customers need and want must be extracted from data to effectively guide new product decisions regarding concept development, design, pricing, and marketing. The benefits of reading this book are twofold. The first is an understanding of the stages of a new product development process from ideation through launching and tracking, each supported by information about customers. The second benefit is an understanding of the deep data analytics for extracting that information from data. These analytics, drawn from the statistics, econometrics, market research, and machine learning spaces, are developed in detail and illustrated at each stage of the process with simulated data. The stages of new product development and the supporting deep data analytics at each stage are not presented in isolation of each other, but are presented as a synergistic whole. This book is recommended reading for analysts involved in new product development. Readers with an analytical bent or who want to develop analytical expertise would also greatly benefit from reading this book, as well as students in business programs.
Deep Data Analytics for New Product Development
Author: Walter R. Paczkowski
Publisher: Routledge
ISBN: 0429663315
Category : Business & Economics
Languages : en
Pages : 304
Book Description
This book presents and develops the deep data analytics for providing the information needed for successful new product development. Deep Data Analytics for New Product Development has a simple theme: information about what customers need and want must be extracted from data to effectively guide new product decisions regarding concept development, design, pricing, and marketing. The benefits of reading this book are twofold. The first is an understanding of the stages of a new product development process from ideation through launching and tracking, each supported by information about customers. The second benefit is an understanding of the deep data analytics for extracting that information from data. These analytics, drawn from the statistics, econometrics, market research, and machine learning spaces, are developed in detail and illustrated at each stage of the process with simulated data. The stages of new product development and the supporting deep data analytics at each stage are not presented in isolation of each other, but are presented as a synergistic whole. This book is recommended reading for analysts involved in new product development. Readers with an analytical bent or who want to develop analytical expertise would also greatly benefit from reading this book, as well as students in business programs.
Publisher: Routledge
ISBN: 0429663315
Category : Business & Economics
Languages : en
Pages : 304
Book Description
This book presents and develops the deep data analytics for providing the information needed for successful new product development. Deep Data Analytics for New Product Development has a simple theme: information about what customers need and want must be extracted from data to effectively guide new product decisions regarding concept development, design, pricing, and marketing. The benefits of reading this book are twofold. The first is an understanding of the stages of a new product development process from ideation through launching and tracking, each supported by information about customers. The second benefit is an understanding of the deep data analytics for extracting that information from data. These analytics, drawn from the statistics, econometrics, market research, and machine learning spaces, are developed in detail and illustrated at each stage of the process with simulated data. The stages of new product development and the supporting deep data analytics at each stage are not presented in isolation of each other, but are presented as a synergistic whole. This book is recommended reading for analysts involved in new product development. Readers with an analytical bent or who want to develop analytical expertise would also greatly benefit from reading this book, as well as students in business programs.
Predictive and Simulation Analytics
Author: Walter R. Paczkowski
Publisher: Springer Nature
ISBN: 3031318870
Category : Business & Economics
Languages : en
Pages : 381
Book Description
This book connects predictive analytics and simulation analytics, with the end goal of providing Rich Information to stakeholders in complex systems to direct data-driven decisions. Readers will explore methods for extracting information from data, work with simple and complex systems, and meld multiple forms of analytics for a more nuanced understanding of data science. The methods can be readily applied to business problems such as demand measurement and forecasting, predictive modeling, pricing analytics including elasticity estimation, customer satisfaction assessment, market research, new product development, and more. The book includes Python examples in Jupyter notebooks, available at the book's affiliated Github. This volume is intended for current and aspiring business data analysts, data scientists, and market research professionals, in both the private and public sectors.
Publisher: Springer Nature
ISBN: 3031318870
Category : Business & Economics
Languages : en
Pages : 381
Book Description
This book connects predictive analytics and simulation analytics, with the end goal of providing Rich Information to stakeholders in complex systems to direct data-driven decisions. Readers will explore methods for extracting information from data, work with simple and complex systems, and meld multiple forms of analytics for a more nuanced understanding of data science. The methods can be readily applied to business problems such as demand measurement and forecasting, predictive modeling, pricing analytics including elasticity estimation, customer satisfaction assessment, market research, new product development, and more. The book includes Python examples in Jupyter notebooks, available at the book's affiliated Github. This volume is intended for current and aspiring business data analysts, data scientists, and market research professionals, in both the private and public sectors.
Business Analytics
Author: Walter R. Paczkowski
Publisher: Springer Nature
ISBN: 3030870235
Category : Business & Economics
Languages : en
Pages : 416
Book Description
This book focuses on three core knowledge requirements for effective and thorough data analysis for solving business problems. These are a foundational understanding of: 1. statistical, econometric, and machine learning techniques; 2. data handling capabilities; 3. at least one programming language. Practical in orientation, the volume offers illustrative case studies throughout and examples using Python in the context of Jupyter notebooks. Covered topics include demand measurement and forecasting, predictive modeling, pricing analytics, customer satisfaction assessment, market and advertising research, and new product development and research. This volume will be useful to business data analysts, data scientists, and market research professionals, as well as aspiring practitioners in business data analytics. It can also be used in colleges and universities offering courses and certifications in business data analytics, data science, and market research.
Publisher: Springer Nature
ISBN: 3030870235
Category : Business & Economics
Languages : en
Pages : 416
Book Description
This book focuses on three core knowledge requirements for effective and thorough data analysis for solving business problems. These are a foundational understanding of: 1. statistical, econometric, and machine learning techniques; 2. data handling capabilities; 3. at least one programming language. Practical in orientation, the volume offers illustrative case studies throughout and examples using Python in the context of Jupyter notebooks. Covered topics include demand measurement and forecasting, predictive modeling, pricing analytics, customer satisfaction assessment, market and advertising research, and new product development and research. This volume will be useful to business data analysts, data scientists, and market research professionals, as well as aspiring practitioners in business data analytics. It can also be used in colleges and universities offering courses and certifications in business data analytics, data science, and market research.
Modern Survey Analysis
Author: Walter R. Paczkowski
Publisher: Springer Nature
ISBN: 303076267X
Category : Business & Economics
Languages : en
Pages : 365
Book Description
This book develops survey data analysis tools in Python, to create and analyze cross-tab tables and data visuals, weight data, perform hypothesis tests, and handle special survey questions such as Check-all-that-Apply. In addition, the basics of Bayesian data analysis and its Python implementation are presented. Since surveys are widely used as the primary method to collect data, and ultimately information, on attitudes, interests, and opinions of customers and constituents, these tools are vital for private or public sector policy decisions. As a compact volume, this book uses case studies to illustrate methods of analysis essential for those who work with survey data in either sector. It focuses on two overarching objectives: Demonstrate how to extract actionable, insightful, and useful information from survey data; and Introduce Python and Pandas for analyzing survey data.
Publisher: Springer Nature
ISBN: 303076267X
Category : Business & Economics
Languages : en
Pages : 365
Book Description
This book develops survey data analysis tools in Python, to create and analyze cross-tab tables and data visuals, weight data, perform hypothesis tests, and handle special survey questions such as Check-all-that-Apply. In addition, the basics of Bayesian data analysis and its Python implementation are presented. Since surveys are widely used as the primary method to collect data, and ultimately information, on attitudes, interests, and opinions of customers and constituents, these tools are vital for private or public sector policy decisions. As a compact volume, this book uses case studies to illustrate methods of analysis essential for those who work with survey data in either sector. It focuses on two overarching objectives: Demonstrate how to extract actionable, insightful, and useful information from survey data; and Introduce Python and Pandas for analyzing survey data.
Business challenge and solve business analyst
Author: Praveshofficial
Publisher: Blue Rose Publishers
ISBN:
Category : Business & Economics
Languages : en
Pages : 416
Book Description
Business challenge and solve business analyst business regarding
Publisher: Blue Rose Publishers
ISBN:
Category : Business & Economics
Languages : en
Pages : 416
Book Description
Business challenge and solve business analyst business regarding
Hands-On Prescriptive Analytics
Author: Walter R. Paczkowski
Publisher: "O'Reilly Media, Inc."
ISBN: 1098153146
Category : Business & Economics
Languages : en
Pages : 412
Book Description
Business decisions in any context—operational, tactical, or strategic—can have considerable consequences. Whether the outcome is positive and rewarding or negative and damaging to the business, its employees, and stakeholders is unknown when action is approved. These decisions are usually made under the proverbial cloud of uncertainty. With this practical guide, data analysts, data scientists, and business analysts will learn why and how maximizing positive consequences and minimizing negative ones requires three forms of rich information: Descriptive analytics explores the results from an action—what has already happened. Predictive analytics focuses on what could happen. The third, prescriptive analytics, informs us what should happen in the future. While all three are important for decision-makers, the primary focus of this book is on the third: prescriptive analytics. Author Walter R. Paczkowski, Ph.D. shows you: The distinction among descriptive, predictive, and prescriptive analytics How predictive analytics produces a menu of action options How prescriptive analytics narrows the menu of action options The forms of prescriptive analytics: eight prescriptive methods Two broad classes of these methods: non-stochastic and stochastic How to develop prescriptive analyses for action recommendations Ways to use an appropriate tool-set in Python
Publisher: "O'Reilly Media, Inc."
ISBN: 1098153146
Category : Business & Economics
Languages : en
Pages : 412
Book Description
Business decisions in any context—operational, tactical, or strategic—can have considerable consequences. Whether the outcome is positive and rewarding or negative and damaging to the business, its employees, and stakeholders is unknown when action is approved. These decisions are usually made under the proverbial cloud of uncertainty. With this practical guide, data analysts, data scientists, and business analysts will learn why and how maximizing positive consequences and minimizing negative ones requires three forms of rich information: Descriptive analytics explores the results from an action—what has already happened. Predictive analytics focuses on what could happen. The third, prescriptive analytics, informs us what should happen in the future. While all three are important for decision-makers, the primary focus of this book is on the third: prescriptive analytics. Author Walter R. Paczkowski, Ph.D. shows you: The distinction among descriptive, predictive, and prescriptive analytics How predictive analytics produces a menu of action options How prescriptive analytics narrows the menu of action options The forms of prescriptive analytics: eight prescriptive methods Two broad classes of these methods: non-stochastic and stochastic How to develop prescriptive analyses for action recommendations Ways to use an appropriate tool-set in Python
Intelligent Systems and IoT Applications in Clinical Health
Author: Joshi, Herat
Publisher: IGI Global
ISBN:
Category : Medical
Languages : en
Pages : 522
Book Description
Integrating intelligent systems and internet of things (IoT) into clinical health is crucial for enhancing patient care and operational efficiency. These technologies enable real-time data collection and analysis, facilitating personalized treatment plans and improving diagnostic accuracy. Together innovations can streamline workflows, reduce costs, and ultimately lead to better health outcomes for patients. It is essential to explore how these technologies can be implemented into healthcare. Intelligent Systems and IoT Applications in Clinical Health explores and elucidates the integration of AI, IoT, and blockchain technologies in healthcare. It advances current research by providing comprehensive insights into how these technologies can be leveraged to enhance patient care, improve operational efficiency, and ensure data security. Covering topics such as clinical healthcare, digital health experience, and monitoring systems, this book is an excellent resource for researchers, academicians, medical professionals, medical administrators, educators, graduate and postgraduate students, and more.
Publisher: IGI Global
ISBN:
Category : Medical
Languages : en
Pages : 522
Book Description
Integrating intelligent systems and internet of things (IoT) into clinical health is crucial for enhancing patient care and operational efficiency. These technologies enable real-time data collection and analysis, facilitating personalized treatment plans and improving diagnostic accuracy. Together innovations can streamline workflows, reduce costs, and ultimately lead to better health outcomes for patients. It is essential to explore how these technologies can be implemented into healthcare. Intelligent Systems and IoT Applications in Clinical Health explores and elucidates the integration of AI, IoT, and blockchain technologies in healthcare. It advances current research by providing comprehensive insights into how these technologies can be leveraged to enhance patient care, improve operational efficiency, and ensure data security. Covering topics such as clinical healthcare, digital health experience, and monitoring systems, this book is an excellent resource for researchers, academicians, medical professionals, medical administrators, educators, graduate and postgraduate students, and more.
Deep Data Analytics for New Product Development
Author: Walter R. Paczkowski
Publisher: Routledge
ISBN: 0429666039
Category : Business & Economics
Languages : en
Pages : 287
Book Description
This book presents and develops the deep data analytics for providing the information needed for successful new product development. Deep Data Analytics for New Product Development has a simple theme: information about what customers need and want must be extracted from data to effectively guide new product decisions regarding concept development, design, pricing, and marketing. The benefits of reading this book are twofold. The first is an understanding of the stages of a new product development process from ideation through launching and tracking, each supported by information about customers. The second benefit is an understanding of the deep data analytics for extracting that information from data. These analytics, drawn from the statistics, econometrics, market research, and machine learning spaces, are developed in detail and illustrated at each stage of the process with simulated data. The stages of new product development and the supporting deep data analytics at each stage are not presented in isolation of each other, but are presented as a synergistic whole. This book is recommended reading for analysts involved in new product development. Readers with an analytical bent or who want to develop analytical expertise would also greatly benefit from reading this book, as well as students in business programs.
Publisher: Routledge
ISBN: 0429666039
Category : Business & Economics
Languages : en
Pages : 287
Book Description
This book presents and develops the deep data analytics for providing the information needed for successful new product development. Deep Data Analytics for New Product Development has a simple theme: information about what customers need and want must be extracted from data to effectively guide new product decisions regarding concept development, design, pricing, and marketing. The benefits of reading this book are twofold. The first is an understanding of the stages of a new product development process from ideation through launching and tracking, each supported by information about customers. The second benefit is an understanding of the deep data analytics for extracting that information from data. These analytics, drawn from the statistics, econometrics, market research, and machine learning spaces, are developed in detail and illustrated at each stage of the process with simulated data. The stages of new product development and the supporting deep data analytics at each stage are not presented in isolation of each other, but are presented as a synergistic whole. This book is recommended reading for analysts involved in new product development. Readers with an analytical bent or who want to develop analytical expertise would also greatly benefit from reading this book, as well as students in business programs.
Pricing Analytics
Author: Walter R. Paczkowski
Publisher: Routledge
ISBN: 1351713094
Category : Business & Economics
Languages : en
Pages : 318
Book Description
The theme of this book is simple. The price – the number someone puts on a product to help consumers decide to buy that product – comes from data. Specifically, itcomes from statistically modeling the data. This book gives the reader the statistical modeling tools needed to get the number to put on a product. But statistical modeling is not done in a vacuum. Economic and statistical principles and theory conjointly provide the background and framework for the models. Therefore, this book emphasizes two interlocking components of modeling: economic theory and statistical principles. The economic theory component is sufficient to provide understanding of the basic principles for pricing, especially about elasticities, which measure the effects of pricing on key business metrics. Elasticity estimation is the goal of statistical modeling, so attention is paid to the concept and implications of elasticities. The statistical modeling component is advanced and detailed covering choice (conjoint, discrete choice, MaxDiff) and sales data modeling. Experimental design principles, model estimation approaches, and analysis methods are discussed and developed for choice models. Regression fundamentals have been developed for sales model specification and estimation and expanded for latent class analysis.
Publisher: Routledge
ISBN: 1351713094
Category : Business & Economics
Languages : en
Pages : 318
Book Description
The theme of this book is simple. The price – the number someone puts on a product to help consumers decide to buy that product – comes from data. Specifically, itcomes from statistically modeling the data. This book gives the reader the statistical modeling tools needed to get the number to put on a product. But statistical modeling is not done in a vacuum. Economic and statistical principles and theory conjointly provide the background and framework for the models. Therefore, this book emphasizes two interlocking components of modeling: economic theory and statistical principles. The economic theory component is sufficient to provide understanding of the basic principles for pricing, especially about elasticities, which measure the effects of pricing on key business metrics. Elasticity estimation is the goal of statistical modeling, so attention is paid to the concept and implications of elasticities. The statistical modeling component is advanced and detailed covering choice (conjoint, discrete choice, MaxDiff) and sales data modeling. Experimental design principles, model estimation approaches, and analysis methods are discussed and developed for choice models. Regression fundamentals have been developed for sales model specification and estimation and expanded for latent class analysis.
Research Anthology on Telemedicine Efficacy, Adoption, and Impact on Healthcare Delivery
Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1799881075
Category : Medical
Languages : en
Pages : 689
Book Description
Telemedicine, which involves electronic communications and software, provides the same clinical services to patients without the requirement of an in-person visit. Essentially, this is considered remote healthcare. Though telemedicine is not a new practice, it has become an increasingly popular form of healthcare delivery due to current events, including the COVID-19 pandemic. Not only are visits being moved onto virtual platforms, but additional materials and correspondence can remain in the digital sphere. Virtual lab results, digital imaging, medical diagnosis, and video consultations are just a few examples that encompass how telemedicine can be used for increased accessibility in healthcare delivery. With telemedicine being used in both the diagnosis and treatment of patients, technology in healthcare can be implemented at almost any phase of the patient experience. As healthcare delivery follows the digital shift, it is important to understand the technologies, benefits and challenges, and overall impacts of the remote healthcare experience. The Research Anthology on Telemedicine Efficacy, Adoption, and Impact on Healthcare Delivery presents the latest research on best practices for adopting telehealth into medical practices and its efficacy and solutions for the improvement of telemedicine, as well as addresses emerging challenges and opportunities, including issues such as securing patient data and providing healthcare accessibility to rural populations. Covering important themes that include doctor-patient relationships, tele-wound monitoring, and telemedicine regulations, this book is essential for healthcare professionals, doctors, medical students, academic and medical libraries, medical technologists, practitioners, stakeholders, researchers, academicians, and students interested in the emerging technological developments and solutions within the field of telemedicine.
Publisher: IGI Global
ISBN: 1799881075
Category : Medical
Languages : en
Pages : 689
Book Description
Telemedicine, which involves electronic communications and software, provides the same clinical services to patients without the requirement of an in-person visit. Essentially, this is considered remote healthcare. Though telemedicine is not a new practice, it has become an increasingly popular form of healthcare delivery due to current events, including the COVID-19 pandemic. Not only are visits being moved onto virtual platforms, but additional materials and correspondence can remain in the digital sphere. Virtual lab results, digital imaging, medical diagnosis, and video consultations are just a few examples that encompass how telemedicine can be used for increased accessibility in healthcare delivery. With telemedicine being used in both the diagnosis and treatment of patients, technology in healthcare can be implemented at almost any phase of the patient experience. As healthcare delivery follows the digital shift, it is important to understand the technologies, benefits and challenges, and overall impacts of the remote healthcare experience. The Research Anthology on Telemedicine Efficacy, Adoption, and Impact on Healthcare Delivery presents the latest research on best practices for adopting telehealth into medical practices and its efficacy and solutions for the improvement of telemedicine, as well as addresses emerging challenges and opportunities, including issues such as securing patient data and providing healthcare accessibility to rural populations. Covering important themes that include doctor-patient relationships, tele-wound monitoring, and telemedicine regulations, this book is essential for healthcare professionals, doctors, medical students, academic and medical libraries, medical technologists, practitioners, stakeholders, researchers, academicians, and students interested in the emerging technological developments and solutions within the field of telemedicine.