Deep Centers in Semiconductors

Deep Centers in Semiconductors PDF Author: Sokrates T. Pantelides
Publisher: CRC Press
ISBN: 9782881245626
Category : Science
Languages : en
Pages : 952

Get Book Here

Book Description
Examines several key semiconductor deep centers, all carefully chosen to illustrate a variety of essential concepts. A deep center is a lattice defect or impurity that causes very localized bound states and energies deep in the band gap. For each deep center chosen, a scientist instrumental in its development discusses the theoretical and experimental techniques used to understand that center. The second edition contains four new sections treating recent developments, including a chapter on hydrogen in crystalline semiconductors. Annotation copyright by Book News, Inc., Portland, OR

Deep Centers in Semiconductors

Deep Centers in Semiconductors PDF Author: Sokrates T. Pantelides
Publisher: CRC Press
ISBN: 9782881245626
Category : Science
Languages : en
Pages : 952

Get Book Here

Book Description
Examines several key semiconductor deep centers, all carefully chosen to illustrate a variety of essential concepts. A deep center is a lattice defect or impurity that causes very localized bound states and energies deep in the band gap. For each deep center chosen, a scientist instrumental in its development discusses the theoretical and experimental techniques used to understand that center. The second edition contains four new sections treating recent developments, including a chapter on hydrogen in crystalline semiconductors. Annotation copyright by Book News, Inc., Portland, OR

Color Centers in Semiconductors for Quantum Applications

Color Centers in Semiconductors for Quantum Applications PDF Author: Joel Davidsson
Publisher: Linköping University Electronic Press
ISBN: 9179297307
Category : Electronic books
Languages : en
Pages : 72

Get Book Here

Book Description
Point defects in semiconductors have been and will continue to be relevant for applications. Shallow defects realize transistors, which power the modern age of information, and in the not-too-distant future, deep-level defects could provide the foundation for a revolution in quantum information processing. Deep-level defects (in particular color centers) are also of interest for other applications such as a single photon emitter, especially one that emits at 1550 nm, which is the optimal frequency for long-range communication via fiber optics. First-principle calculations can predict the energies and optical properties of point defects. I performed extensive convergence tests for magneto-optical properties, such as zero phonon lines, hyperfine coupling parameters, and zero-field splitting for the four different configurations of the divacancy in 4H-SiC. Comparing the converged results with experimental measurements, a clear identification of the different configurations was made. With this approach, I also identified all configurations for the silicon vacancy in 4H-SiC as well as the divacancy and silicon vacancy in 6H-SiC. The same method was further used to identify two additional configurations belonging to the divacancy present in a 3C stacking fault inclusion in 4H-SiC. I extended the calculated properties to include the transition dipole moment which provides the polarization, intensity, and lifetime of the zero phonon lines. When calculating the transition dipole moment, I show that it is crucial to include the self-consistent change of the electronic orbitals in the excited state due to the geometry relaxation. I tested the method on the divacancy in 4H-SiC, further strengthening the previous identification and providing accurate photoluminescence intensities and lifetimes. Finding stable point defects with the right properties for a given application is a challenging task. Due to the vast number of possible point defects present in bulk semiconductor materials, I designed and implemented a collection of automatic workflows to systematically investigate any point defects. This collection is called ADAQ (Automatic Defect Analysis and Qualification) and automates every step of the theoretical process, from creating defects to predicting their properties. Using ADAQ, I screened about 8000 intrinsic point defect clusters in 4H-SiC. This thesis presents an overview of the formation energy and the most relevant optical properties for these single and double point defects. These results show great promise for finding new color centers suitable for various quantum applications.

Defects in Semiconductors

Defects in Semiconductors PDF Author:
Publisher: Academic Press
ISBN: 0128019409
Category : Technology & Engineering
Languages : en
Pages : 458

Get Book Here

Book Description
This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoretical paths. - Expert contributors - Reviews of the most important recent literature - Clear illustrations - A broad view, including examination of defects in different semiconductors

Fundamentals of Semiconductors

Fundamentals of Semiconductors PDF Author: Peter YU
Publisher: Springer Science & Business Media
ISBN: 3642007104
Category : Technology & Engineering
Languages : en
Pages : 778

Get Book Here

Book Description
Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.

Doping in III-V Semiconductors

Doping in III-V Semiconductors PDF Author: E. Fred Schubert
Publisher: E. Fred Schubert
ISBN: 0986382639
Category : Science
Languages : en
Pages : 624

Get Book Here

Book Description
This is the first book to describe thoroughly the many facets of doping in compound semiconductors. Equal emphasis is given to the fundamental materials physics and to the technological aspects of doping. The author describes various doping techniques, including doping during epitaxial growth, doping by implantation, and doping by diffusion. The key characteristics of all dopants that have been employed in III-V semiconductors are discussed. In addition, general characteristics of dopants are analyzed, including the electrical activity, saturation, amphotericity, autocompensation, and maximum attainable dopant concentration. Redistribution effects are important in semiconductor microstructures. Linear and non-linear diffusion, different microscopic diffusion mechanisms, surface segregation, surface drift, surface migration, impurity-induced disordering, and the respective physical driving mechanisms are illustrated. Topics related to basic impurity theory include the hydrogenic model for shallow impurities, linear screening, density of states, classical and quantum statistics, the law of mass action, as well as many analytic approximations for the Fermi-Dirac integral for three-, two- and one dimensional systems. The timely topic of highly doped semiconductors, including band tails, impurity bands, bandgap renormalization, the Mott transition, and the Burstein-Moss shift, is discussed as well. Doping is essential in many semiconductor heterostructures including high-mobility selectively doped heterostructures, quantum well and quantum barrier structures, doping superlattice structures and d-doping structures. Technologically important deep levels are summarized, including Fe, Cr, and the DX-center, the EL2 defect, and rare-earth impurities. The properties of deep levels are presented phenomenologically, including emission, capture, Shockley-Read recombination, the Poole-Frenkel effect, lattice relaxation, and other effects. The final chapter is dedicated to the experimental characterization of impurities. This book will be of interest to graduate students, researchers and development engineers in the fields of electrical engineering, materials science, physics, and chemistry working on semiconductors. The book may also be used as a text for graduate courses in electrical engineering and materials science.

Nonradiative Recombination in Semiconductors

Nonradiative Recombination in Semiconductors PDF Author: V.N. Abakumov
Publisher: Elsevier
ISBN: 0444600825
Category : Science
Languages : en
Pages : 337

Get Book Here

Book Description
In recent years, great progress has been made in the understandingof recombination processes controlling the number of excessfree carriers in semiconductors under nonequilibrium conditions. As a result, it is now possible to give a comprehensivetheoretical description of these processes. The authors haveselected a number of experimental results which elucidate theunderlying physical problems and enable a test of theoreticalmodels.The following topics are dealt with: phenomenological theory ofrecombination, theoretical models of shallow and deep localizedstates, cascade model of carrier capture by impurity centers,capture restricted by diffusion, multiphonon processes, Augerprocesses, effect of electric field on capture and thermalemission of carriers.

Trap Level Spectroscopy in Amorphous Semiconductors

Trap Level Spectroscopy in Amorphous Semiconductors PDF Author: Victor V. Mikla
Publisher: Elsevier
ISBN: 0123847168
Category : Science
Languages : en
Pages : 129

Get Book Here

Book Description
Although amorphous semiconductors have been studied for over four decades, many of their properties are not fully understood. This book discusses not only the most common spectroscopic techniques but also describes their advantages and disadvantages. - Provides information on the most used spectroscopic techniques - Discusses the advantages and disadvantages of each technique

Point Defects in Semiconductors II

Point Defects in Semiconductors II PDF Author: J. Bourgoin
Publisher: Springer Science & Business Media
ISBN: 3642818323
Category : Science
Languages : en
Pages : 314

Get Book Here

Book Description
In introductory solid-state physics texts we are introduced to the concept of a perfect crystalline solid with every atom in its proper place. This is a convenient first step in developing the concept of electronic band struc ture, and from it deducing the general electronic and optical properties of crystalline solids. However, for the student who does not proceed further, such an idealization can be grossly misleading. A perfect crystal does not exist. There are always defects. It was recognized very early in the study of solids that these defects often have a profound effect on the real physical properties of a solid. As a result, a major part of scientific research in solid-state physics has,' from the early studies of "color centers" in alkali halides to the present vigorous investigations of deep levels in semiconductors, been devoted to the study of defects. We now know that in actual fact, most of the interest ing and important properties of solids-electrical, optical, mechanical- are determined not so much by the properties of the perfect crystal as by its im perfections.

Fundamentals of Semiconductors

Fundamentals of Semiconductors PDF Author: Peter YU
Publisher: Springer Science & Business Media
ISBN: 3540264752
Category : Technology & Engineering
Languages : en
Pages : 651

Get Book Here

Book Description
Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.

Elements of Infrared Technology: Generation, Transmission, and Detection

Elements of Infrared Technology: Generation, Transmission, and Detection PDF Author: Paul W. Kruse
Publisher: John Wiley & Sons
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 482

Get Book Here

Book Description