Author: Alexander Meister
Publisher: Springer Science & Business Media
ISBN: 3540875573
Category : Mathematics
Languages : en
Pages : 211
Book Description
Deconvolution problems occur in many ?elds of nonparametric statistics, for example, density estimation based on contaminated data, nonparametric - gression with errors-in-variables, image and signal deblurring. During the last two decades, those topics have received more and more attention. As appli- tions of deconvolution procedures concern many real-life problems in eco- metrics, biometrics, medical statistics, image reconstruction, one can realize an increasing number of applied statisticians who are interested in nonpa- metric deconvolution methods; on the other hand, some deep results from Fourier analysis, functional analysis, and probability theory are required to understand the construction of deconvolution techniques and their properties so that deconvolution is also particularly challenging for mathematicians. Thegeneraldeconvolutionprobleminstatisticscanbedescribedasfollows: Our goal is estimating a function f while any empirical access is restricted to some quantity h = f?G = f(x?y)dG(y), (1. 1) that is, the convolution of f and some probability distribution G. Therefore, f can be estimated from some observations only indirectly. The strategy is ˆ estimating h ?rst; this means producing an empirical version h of h and, then, ˆ applying a deconvolution procedure to h to estimate f. In the mathematical context, we have to invert the convolution operator with G where some reg- ˆ ularization is required to guarantee that h is contained in the invertibility ˆ domain of the convolution operator. The estimator h has to be chosen with respect to the speci?c statistical experiment.
Deconvolution Problems in Nonparametric Statistics
Author: Alexander Meister
Publisher: Springer Science & Business Media
ISBN: 3540875573
Category : Mathematics
Languages : en
Pages : 211
Book Description
Deconvolution problems occur in many ?elds of nonparametric statistics, for example, density estimation based on contaminated data, nonparametric - gression with errors-in-variables, image and signal deblurring. During the last two decades, those topics have received more and more attention. As appli- tions of deconvolution procedures concern many real-life problems in eco- metrics, biometrics, medical statistics, image reconstruction, one can realize an increasing number of applied statisticians who are interested in nonpa- metric deconvolution methods; on the other hand, some deep results from Fourier analysis, functional analysis, and probability theory are required to understand the construction of deconvolution techniques and their properties so that deconvolution is also particularly challenging for mathematicians. Thegeneraldeconvolutionprobleminstatisticscanbedescribedasfollows: Our goal is estimating a function f while any empirical access is restricted to some quantity h = f?G = f(x?y)dG(y), (1. 1) that is, the convolution of f and some probability distribution G. Therefore, f can be estimated from some observations only indirectly. The strategy is ˆ estimating h ?rst; this means producing an empirical version h of h and, then, ˆ applying a deconvolution procedure to h to estimate f. In the mathematical context, we have to invert the convolution operator with G where some reg- ˆ ularization is required to guarantee that h is contained in the invertibility ˆ domain of the convolution operator. The estimator h has to be chosen with respect to the speci?c statistical experiment.
Publisher: Springer Science & Business Media
ISBN: 3540875573
Category : Mathematics
Languages : en
Pages : 211
Book Description
Deconvolution problems occur in many ?elds of nonparametric statistics, for example, density estimation based on contaminated data, nonparametric - gression with errors-in-variables, image and signal deblurring. During the last two decades, those topics have received more and more attention. As appli- tions of deconvolution procedures concern many real-life problems in eco- metrics, biometrics, medical statistics, image reconstruction, one can realize an increasing number of applied statisticians who are interested in nonpa- metric deconvolution methods; on the other hand, some deep results from Fourier analysis, functional analysis, and probability theory are required to understand the construction of deconvolution techniques and their properties so that deconvolution is also particularly challenging for mathematicians. Thegeneraldeconvolutionprobleminstatisticscanbedescribedasfollows: Our goal is estimating a function f while any empirical access is restricted to some quantity h = f?G = f(x?y)dG(y), (1. 1) that is, the convolution of f and some probability distribution G. Therefore, f can be estimated from some observations only indirectly. The strategy is ˆ estimating h ?rst; this means producing an empirical version h of h and, then, ˆ applying a deconvolution procedure to h to estimate f. In the mathematical context, we have to invert the convolution operator with G where some reg- ˆ ularization is required to guarantee that h is contained in the invertibility ˆ domain of the convolution operator. The estimator h has to be chosen with respect to the speci?c statistical experiment.
Recent Advances and Trends in Nonparametric Statistics
Author: M.G. Akritas
Publisher: Elsevier
ISBN: 0444513787
Category : Computers
Languages : en
Pages : 524
Book Description
The advent of high-speed, affordable computers in the last two decades has given a new boost to the nonparametric way of thinking. Classical nonparametric procedures, such as function smoothing, suddenly lost their abstract flavour as they became practically implementable. In addition, many previously unthinkable possibilities became mainstream; prime examples include the bootstrap and resampling methods, wavelets and nonlinear smoothers, graphical methods, data mining, bioinformatics, as well as the more recent algorithmic approaches such as bagging and boosting. This volume is a collection of short articles - most of which having a review component - describing the state-of-the art of Nonparametric Statistics at the beginning of a new millennium. Key features: . algorithic approaches . wavelets and nonlinear smoothers . graphical methods and data mining . biostatistics and bioinformatics . bagging and boosting . support vector machines . resampling methods
Publisher: Elsevier
ISBN: 0444513787
Category : Computers
Languages : en
Pages : 524
Book Description
The advent of high-speed, affordable computers in the last two decades has given a new boost to the nonparametric way of thinking. Classical nonparametric procedures, such as function smoothing, suddenly lost their abstract flavour as they became practically implementable. In addition, many previously unthinkable possibilities became mainstream; prime examples include the bootstrap and resampling methods, wavelets and nonlinear smoothers, graphical methods, data mining, bioinformatics, as well as the more recent algorithmic approaches such as bagging and boosting. This volume is a collection of short articles - most of which having a review component - describing the state-of-the art of Nonparametric Statistics at the beginning of a new millennium. Key features: . algorithic approaches . wavelets and nonlinear smoothers . graphical methods and data mining . biostatistics and bioinformatics . bagging and boosting . support vector machines . resampling methods
Nonparametric Statistics and Mixture Models
Author: David R. Hunter
Publisher: World Scientific
ISBN: 9814340553
Category : Mathematics
Languages : en
Pages : 370
Book Description
This festschrift includes papers authored by many collaborators, colleagues, and students of Professor Thomas P Hettmansperger, who worked in research in nonparametric statistics, rank statistics, robustness, and mixture models during a career that spanned nearly 40 years. It is a broad sample of peer-reviewed, cutting-edge research related to nonparametrics and mixture models.
Publisher: World Scientific
ISBN: 9814340553
Category : Mathematics
Languages : en
Pages : 370
Book Description
This festschrift includes papers authored by many collaborators, colleagues, and students of Professor Thomas P Hettmansperger, who worked in research in nonparametric statistics, rank statistics, robustness, and mixture models during a career that spanned nearly 40 years. It is a broad sample of peer-reviewed, cutting-edge research related to nonparametrics and mixture models.
Studies in Theoretical and Applied Statistics
Author: Nicola Salvati
Publisher: Springer Nature
ISBN: 3031166094
Category : Mathematics
Languages : en
Pages : 548
Book Description
This book includes a wide selection of papers presented at the 50th Scientific Meeting of the Italian Statistical Society (SIS2021), held virtually on 21-25 June 2021. It covers a wide variety of subjects ranging from methodological and theoretical contributions to applied works and case studies, giving an excellent overview of the interests of the Italian statisticians and their international collaborations. Intended for researchers interested in theoretical and empirical issues, this volume provides interesting starting points for further research.
Publisher: Springer Nature
ISBN: 3031166094
Category : Mathematics
Languages : en
Pages : 548
Book Description
This book includes a wide selection of papers presented at the 50th Scientific Meeting of the Italian Statistical Society (SIS2021), held virtually on 21-25 June 2021. It covers a wide variety of subjects ranging from methodological and theoretical contributions to applied works and case studies, giving an excellent overview of the interests of the Italian statisticians and their international collaborations. Intended for researchers interested in theoretical and empirical issues, this volume provides interesting starting points for further research.
Combining, Modelling and Analyzing Imprecision, Randomness and Dependence
Author: Jonathan Ansari
Publisher: Springer Nature
ISBN: 3031659937
Category :
Languages : en
Pages : 579
Book Description
Publisher: Springer Nature
ISBN: 3031659937
Category :
Languages : en
Pages : 579
Book Description
Nonparametric Statistics for Stochastic Processes
Author: D. Bosq
Publisher: Springer Science & Business Media
ISBN: 1461217180
Category : Mathematics
Languages : en
Pages : 219
Book Description
This book is devoted to the theory and applications of nonparametic functional estimation and prediction. Chapter 1 provides an overview of inequalities and limit theorems for strong mixing processes. Density and regression estimation in discrete time are studied in Chapter 2 and 3. The special rates of convergence which appear in continuous time are presented in Chapters 4 and 5. This second edition is extensively revised and it contains two new chapters. Chapter 6 discusses the surprising local time density estimator. Chapter 7 gives a detailed account of implementation of nonparametric method and practical examples in economics, finance and physics. Comarison with ARMA and ARCH methods shows the efficiency of nonparametric forecasting. The prerequisite is a knowledge of classical probability theory and statistics. Denis Bosq is Professor of Statistics at the Unviersity of Paris 6 (Pierre et Marie Curie). He is Editor-in-Chief of "Statistical Inference for Stochastic Processes" and an editor of "Journal of Nonparametric Statistics". He is an elected member of the International Statistical Institute. He has published about 90 papers or works in nonparametric statistics and four books.
Publisher: Springer Science & Business Media
ISBN: 1461217180
Category : Mathematics
Languages : en
Pages : 219
Book Description
This book is devoted to the theory and applications of nonparametic functional estimation and prediction. Chapter 1 provides an overview of inequalities and limit theorems for strong mixing processes. Density and regression estimation in discrete time are studied in Chapter 2 and 3. The special rates of convergence which appear in continuous time are presented in Chapters 4 and 5. This second edition is extensively revised and it contains two new chapters. Chapter 6 discusses the surprising local time density estimator. Chapter 7 gives a detailed account of implementation of nonparametric method and practical examples in economics, finance and physics. Comarison with ARMA and ARCH methods shows the efficiency of nonparametric forecasting. The prerequisite is a knowledge of classical probability theory and statistics. Denis Bosq is Professor of Statistics at the Unviersity of Paris 6 (Pierre et Marie Curie). He is Editor-in-Chief of "Statistical Inference for Stochastic Processes" and an editor of "Journal of Nonparametric Statistics". He is an elected member of the International Statistical Institute. He has published about 90 papers or works in nonparametric statistics and four books.
All of Nonparametric Statistics
Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387306234
Category : Mathematics
Languages : en
Pages : 272
Book Description
This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.
Publisher: Springer Science & Business Media
ISBN: 0387306234
Category : Mathematics
Languages : en
Pages : 272
Book Description
This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.
Nonparametric Estimation under Shape Constraints
Author: Piet Groeneboom
Publisher: Cambridge University Press
ISBN: 1316194124
Category : Mathematics
Languages : en
Pages : 429
Book Description
This book treats the latest developments in the theory of order-restricted inference, with special attention to nonparametric methods and algorithmic aspects. Among the topics treated are current status and interval censoring models, competing risk models, and deconvolution. Methods of order restricted inference are used in computing maximum likelihood estimators and developing distribution theory for inverse problems of this type. The authors have been active in developing these tools and present the state of the art and the open problems in the field. The earlier chapters provide an introduction to the subject, while the later chapters are written with graduate students and researchers in mathematical statistics in mind. Each chapter ends with a set of exercises of varying difficulty. The theory is illustrated with the analysis of real-life data, which are mostly medical in nature.
Publisher: Cambridge University Press
ISBN: 1316194124
Category : Mathematics
Languages : en
Pages : 429
Book Description
This book treats the latest developments in the theory of order-restricted inference, with special attention to nonparametric methods and algorithmic aspects. Among the topics treated are current status and interval censoring models, competing risk models, and deconvolution. Methods of order restricted inference are used in computing maximum likelihood estimators and developing distribution theory for inverse problems of this type. The authors have been active in developing these tools and present the state of the art and the open problems in the field. The earlier chapters provide an introduction to the subject, while the later chapters are written with graduate students and researchers in mathematical statistics in mind. Each chapter ends with a set of exercises of varying difficulty. The theory is illustrated with the analysis of real-life data, which are mostly medical in nature.
Semiparametric Methods in Econometrics
Author: Joel L. Horowitz
Publisher: Springer Science & Business Media
ISBN: 1461206219
Category : Mathematics
Languages : en
Pages : 211
Book Description
Many econometric models contain unknown functions as well as finite- dimensional parameters. Examples of such unknown functions are the distribution function of an unobserved random variable or a transformation of an observed variable. Econometric methods for estimating population parameters in the presence of unknown functions are called "semiparametric." During the past 15 years, much research has been carried out on semiparametric econometric models that are relevant to empirical economics. This book synthesizes the results that have been achieved for five important classes of models. The book is aimed at graduate students in econometrics and statistics as well as professionals who are not experts in semiparametic methods. The usefulness of the methods will be illustrated with applications that use real data.
Publisher: Springer Science & Business Media
ISBN: 1461206219
Category : Mathematics
Languages : en
Pages : 211
Book Description
Many econometric models contain unknown functions as well as finite- dimensional parameters. Examples of such unknown functions are the distribution function of an unobserved random variable or a transformation of an observed variable. Econometric methods for estimating population parameters in the presence of unknown functions are called "semiparametric." During the past 15 years, much research has been carried out on semiparametric econometric models that are relevant to empirical economics. This book synthesizes the results that have been achieved for five important classes of models. The book is aimed at graduate students in econometrics and statistics as well as professionals who are not experts in semiparametic methods. The usefulness of the methods will be illustrated with applications that use real data.
Missing and Modified Data in Nonparametric Estimation
Author: Sam Efromovich
Publisher: CRC Press
ISBN: 1351679848
Category : Mathematics
Languages : en
Pages : 448
Book Description
This book presents a systematic and unified approach for modern nonparametric treatment of missing and modified data via examples of density and hazard rate estimation, nonparametric regression, filtering signals, and time series analysis. All basic types of missing at random and not at random, biasing, truncation, censoring, and measurement errors are discussed, and their treatment is explained. Ten chapters of the book cover basic cases of direct data, biased data, nondestructive and destructive missing, survival data modified by truncation and censoring, missing survival data, stationary and nonstationary time series and processes, and ill-posed modifications. The coverage is suitable for self-study or a one-semester course for graduate students with a prerequisite of a standard course in introductory probability. Exercises of various levels of difficulty will be helpful for the instructor and self-study. The book is primarily about practically important small samples. It explains when consistent estimation is possible, and why in some cases missing data should be ignored and why others must be considered. If missing or data modification makes consistent estimation impossible, then the author explains what type of action is needed to restore the lost information. The book contains more than a hundred figures with simulated data that explain virtually every setting, claim, and development. The companion R software package allows the reader to verify, reproduce and modify every simulation and used estimators. This makes the material fully transparent and allows one to study it interactively. Sam Efromovich is the Endowed Professor of Mathematical Sciences and the Head of the Actuarial Program at the University of Texas at Dallas. He is well known for his work on the theory and application of nonparametric curve estimation and is the author of Nonparametric Curve Estimation: Methods, Theory, and Applications. Professor Sam Efromovich is a Fellow of the Institute of Mathematical Statistics and the American Statistical Association.
Publisher: CRC Press
ISBN: 1351679848
Category : Mathematics
Languages : en
Pages : 448
Book Description
This book presents a systematic and unified approach for modern nonparametric treatment of missing and modified data via examples of density and hazard rate estimation, nonparametric regression, filtering signals, and time series analysis. All basic types of missing at random and not at random, biasing, truncation, censoring, and measurement errors are discussed, and their treatment is explained. Ten chapters of the book cover basic cases of direct data, biased data, nondestructive and destructive missing, survival data modified by truncation and censoring, missing survival data, stationary and nonstationary time series and processes, and ill-posed modifications. The coverage is suitable for self-study or a one-semester course for graduate students with a prerequisite of a standard course in introductory probability. Exercises of various levels of difficulty will be helpful for the instructor and self-study. The book is primarily about practically important small samples. It explains when consistent estimation is possible, and why in some cases missing data should be ignored and why others must be considered. If missing or data modification makes consistent estimation impossible, then the author explains what type of action is needed to restore the lost information. The book contains more than a hundred figures with simulated data that explain virtually every setting, claim, and development. The companion R software package allows the reader to verify, reproduce and modify every simulation and used estimators. This makes the material fully transparent and allows one to study it interactively. Sam Efromovich is the Endowed Professor of Mathematical Sciences and the Head of the Actuarial Program at the University of Texas at Dallas. He is well known for his work on the theory and application of nonparametric curve estimation and is the author of Nonparametric Curve Estimation: Methods, Theory, and Applications. Professor Sam Efromovich is a Fellow of the Institute of Mathematical Statistics and the American Statistical Association.