Author: Haotian Cao
Publisher: Springer Nature
ISBN: 3031015061
Category : Technology & Engineering
Languages : en
Pages : 128
Book Description
The intelligent vehicle will play a crucial and essential role in the development of the future intelligent transportation system, which is developing toward the connected driving environment, ultimate driving safety, and comforts, as well as green efficiency. While the decision making, planning, and control are extremely vital components of the intelligent vehicle, these modules act as a bridge, connecting the subsystem of the environmental perception and the bottom-level control execution of the vehicle as well. This short book covers various strategies of designing the decision making, trajectory planning, and tracking control, as well as share driving, of the human-automation to adapt to different levels of the automated driving system. More specifically, we introduce an end-to-end decision-making module based on the deep Q-learning, and improved path-planning methods based on artificial potentials and elastic bands which are designed for obstacle avoidance. Then, the optimal method based on the convex optimization and the natural cubic spline is presented. As for the speed planning, planning methods based on the multi-object optimization and high-order polynomials, and a method with convex optimization and natural cubic splines, are proposed for the non-vehicle-following scenario (e.g., free driving, lane change, obstacle avoidance), while the planning method based on vehicle-following kinematics and the model predictive control (MPC) is adopted for the car-following scenario. We introduce two robust tracking methods for the trajectory following. The first one, based on nonlinear vehicle longitudinal or path-preview dynamic systems, utilizes the adaptive sliding mode control (SMC) law which can compensate for uncertainties to follow the speed or path profiles. The second one is based on the five-degrees-of-freedom nonlinear vehicle dynamical system that utilizes the linearized time-varying MPC to track the speed and path profile simultaneously. Toward human-automation cooperative driving systems, we introduce two control strategies to address the control authority and conflict management problems between the human driver and the automated driving systems. Driving safety field and game theory are utilized to propose a game-based strategy, which is used to deal with path conflicts during obstacle avoidance. Driver's driving intention, situation assessment, and performance index are employed for the development of the fuzzy-based strategy. Multiple case studies and demos are included in each chapter to show the effectiveness of the proposed approach. We sincerely hope the contents of this short book provide certain theoretical guidance and technical supports for the development of intelligent vehicle technology.
Decision Making, Planning, and Control Strategies for Intelligent Vehicles
Author: Haotian Cao
Publisher: Springer Nature
ISBN: 3031015061
Category : Technology & Engineering
Languages : en
Pages : 128
Book Description
The intelligent vehicle will play a crucial and essential role in the development of the future intelligent transportation system, which is developing toward the connected driving environment, ultimate driving safety, and comforts, as well as green efficiency. While the decision making, planning, and control are extremely vital components of the intelligent vehicle, these modules act as a bridge, connecting the subsystem of the environmental perception and the bottom-level control execution of the vehicle as well. This short book covers various strategies of designing the decision making, trajectory planning, and tracking control, as well as share driving, of the human-automation to adapt to different levels of the automated driving system. More specifically, we introduce an end-to-end decision-making module based on the deep Q-learning, and improved path-planning methods based on artificial potentials and elastic bands which are designed for obstacle avoidance. Then, the optimal method based on the convex optimization and the natural cubic spline is presented. As for the speed planning, planning methods based on the multi-object optimization and high-order polynomials, and a method with convex optimization and natural cubic splines, are proposed for the non-vehicle-following scenario (e.g., free driving, lane change, obstacle avoidance), while the planning method based on vehicle-following kinematics and the model predictive control (MPC) is adopted for the car-following scenario. We introduce two robust tracking methods for the trajectory following. The first one, based on nonlinear vehicle longitudinal or path-preview dynamic systems, utilizes the adaptive sliding mode control (SMC) law which can compensate for uncertainties to follow the speed or path profiles. The second one is based on the five-degrees-of-freedom nonlinear vehicle dynamical system that utilizes the linearized time-varying MPC to track the speed and path profile simultaneously. Toward human-automation cooperative driving systems, we introduce two control strategies to address the control authority and conflict management problems between the human driver and the automated driving systems. Driving safety field and game theory are utilized to propose a game-based strategy, which is used to deal with path conflicts during obstacle avoidance. Driver's driving intention, situation assessment, and performance index are employed for the development of the fuzzy-based strategy. Multiple case studies and demos are included in each chapter to show the effectiveness of the proposed approach. We sincerely hope the contents of this short book provide certain theoretical guidance and technical supports for the development of intelligent vehicle technology.
Publisher: Springer Nature
ISBN: 3031015061
Category : Technology & Engineering
Languages : en
Pages : 128
Book Description
The intelligent vehicle will play a crucial and essential role in the development of the future intelligent transportation system, which is developing toward the connected driving environment, ultimate driving safety, and comforts, as well as green efficiency. While the decision making, planning, and control are extremely vital components of the intelligent vehicle, these modules act as a bridge, connecting the subsystem of the environmental perception and the bottom-level control execution of the vehicle as well. This short book covers various strategies of designing the decision making, trajectory planning, and tracking control, as well as share driving, of the human-automation to adapt to different levels of the automated driving system. More specifically, we introduce an end-to-end decision-making module based on the deep Q-learning, and improved path-planning methods based on artificial potentials and elastic bands which are designed for obstacle avoidance. Then, the optimal method based on the convex optimization and the natural cubic spline is presented. As for the speed planning, planning methods based on the multi-object optimization and high-order polynomials, and a method with convex optimization and natural cubic splines, are proposed for the non-vehicle-following scenario (e.g., free driving, lane change, obstacle avoidance), while the planning method based on vehicle-following kinematics and the model predictive control (MPC) is adopted for the car-following scenario. We introduce two robust tracking methods for the trajectory following. The first one, based on nonlinear vehicle longitudinal or path-preview dynamic systems, utilizes the adaptive sliding mode control (SMC) law which can compensate for uncertainties to follow the speed or path profiles. The second one is based on the five-degrees-of-freedom nonlinear vehicle dynamical system that utilizes the linearized time-varying MPC to track the speed and path profile simultaneously. Toward human-automation cooperative driving systems, we introduce two control strategies to address the control authority and conflict management problems between the human driver and the automated driving systems. Driving safety field and game theory are utilized to propose a game-based strategy, which is used to deal with path conflicts during obstacle avoidance. Driver's driving intention, situation assessment, and performance index are employed for the development of the fuzzy-based strategy. Multiple case studies and demos are included in each chapter to show the effectiveness of the proposed approach. We sincerely hope the contents of this short book provide certain theoretical guidance and technical supports for the development of intelligent vehicle technology.
Creating Autonomous Vehicle Systems
Author: Shaoshan Liu
Publisher: Morgan & Claypool Publishers
ISBN: 1681731673
Category : Computers
Languages : en
Pages : 285
Book Description
This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.
Publisher: Morgan & Claypool Publishers
ISBN: 1681731673
Category : Computers
Languages : en
Pages : 285
Book Description
This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.
Decision-making Strategies for Automated Driving in Urban Environments
Author: Antonio Artuñedo
Publisher: Springer Nature
ISBN: 3030459055
Category : Technology & Engineering
Languages : en
Pages : 205
Book Description
This book describes an effective decision-making and planning architecture for enhancing the navigation capabilities of automated vehicles in the presence of non-detailed, open-source maps. The system involves dynamically obtaining road corridors from map information and utilizing a camera-based lane detection system to update and enhance the navigable space in order to address the issues of intrinsic uncertainty and low-fidelity. An efficient and human-like local planner then determines, within a probabilistic framework, a safe motion trajectory, ensuring the continuity of the path curvature and limiting longitudinal and lateral accelerations. LiDAR-based perception is then used to identify the driving scenario, and subsequently re-plan the trajectory, leading in some cases to adjustment of the high-level route to reach the given destination. The method has been validated through extensive theoretical and experimental analyses, which are reported here in detail.
Publisher: Springer Nature
ISBN: 3030459055
Category : Technology & Engineering
Languages : en
Pages : 205
Book Description
This book describes an effective decision-making and planning architecture for enhancing the navigation capabilities of automated vehicles in the presence of non-detailed, open-source maps. The system involves dynamically obtaining road corridors from map information and utilizing a camera-based lane detection system to update and enhance the navigable space in order to address the issues of intrinsic uncertainty and low-fidelity. An efficient and human-like local planner then determines, within a probabilistic framework, a safe motion trajectory, ensuring the continuity of the path curvature and limiting longitudinal and lateral accelerations. LiDAR-based perception is then used to identify the driving scenario, and subsequently re-plan the trajectory, leading in some cases to adjustment of the high-level route to reach the given destination. The method has been validated through extensive theoretical and experimental analyses, which are reported here in detail.
Decision-Making Techniques for Autonomous Vehicles
Author: Jorge Villagra
Publisher: Elsevier
ISBN: 0323985491
Category : Technology & Engineering
Languages : en
Pages : 426
Book Description
Decision-Making Techniques for Autonomous Vehicles provides a general overview of control and decision-making tools that could be used in autonomous vehicles. Motion prediction and planning tools are presented, along with the use of machine learning and adaptability to improve performance of algorithms in real scenarios. The book then examines how driver monitoring and behavior analysis are used produce comprehensive and predictable reactions in automated vehicles. The book ultimately covers regulatory and ethical issues to consider for implementing correct and robust decision-making. This book is for researchers as well as Masters and PhD students working with autonomous vehicles and decision algorithms. - Provides a complete overview of decision-making and control techniques for autonomous vehicles - Includes technical, physical, and mathematical explanations to provide knowledge for implementation of tools - Features machine learning to improve performance of decision-making algorithms - Shows how regulations and ethics influence the development and implementation of these algorithms in real scenarios
Publisher: Elsevier
ISBN: 0323985491
Category : Technology & Engineering
Languages : en
Pages : 426
Book Description
Decision-Making Techniques for Autonomous Vehicles provides a general overview of control and decision-making tools that could be used in autonomous vehicles. Motion prediction and planning tools are presented, along with the use of machine learning and adaptability to improve performance of algorithms in real scenarios. The book then examines how driver monitoring and behavior analysis are used produce comprehensive and predictable reactions in automated vehicles. The book ultimately covers regulatory and ethical issues to consider for implementing correct and robust decision-making. This book is for researchers as well as Masters and PhD students working with autonomous vehicles and decision algorithms. - Provides a complete overview of decision-making and control techniques for autonomous vehicles - Includes technical, physical, and mathematical explanations to provide knowledge for implementation of tools - Features machine learning to improve performance of decision-making algorithms - Shows how regulations and ethics influence the development and implementation of these algorithms in real scenarios
Autonomous Intelligent Vehicles
Author: Hong Cheng
Publisher: Springer Science & Business Media
ISBN: 1447122801
Category : Computers
Languages : en
Pages : 151
Book Description
This important text/reference presents state-of-the-art research on intelligent vehicles, covering not only topics of object/obstacle detection and recognition, but also aspects of vehicle motion control. With an emphasis on both high-level concepts, and practical detail, the text links theory, algorithms, and issues of hardware and software implementation in intelligent vehicle research. Topics and features: presents a thorough introduction to the development and latest progress in intelligent vehicle research, and proposes a basic framework; provides detection and tracking algorithms for structured and unstructured roads, as well as on-road vehicle detection and tracking algorithms using boosted Gabor features; discusses an approach for multiple sensor-based multiple-object tracking, in addition to an integrated DGPS/IMU positioning approach; examines a vehicle navigation approach using global views; introduces algorithms for lateral and longitudinal vehicle motion control.
Publisher: Springer Science & Business Media
ISBN: 1447122801
Category : Computers
Languages : en
Pages : 151
Book Description
This important text/reference presents state-of-the-art research on intelligent vehicles, covering not only topics of object/obstacle detection and recognition, but also aspects of vehicle motion control. With an emphasis on both high-level concepts, and practical detail, the text links theory, algorithms, and issues of hardware and software implementation in intelligent vehicle research. Topics and features: presents a thorough introduction to the development and latest progress in intelligent vehicle research, and proposes a basic framework; provides detection and tracking algorithms for structured and unstructured roads, as well as on-road vehicle detection and tracking algorithms using boosted Gabor features; discusses an approach for multiple sensor-based multiple-object tracking, in addition to an integrated DGPS/IMU positioning approach; examines a vehicle navigation approach using global views; introduces algorithms for lateral and longitudinal vehicle motion control.
Dynamics in Logistics
Author: Michael Freitag
Publisher: Springer Nature
ISBN: 3030447839
Category : Technology & Engineering
Languages : en
Pages : 575
Book Description
Since 2007, the biennial International Conferences on Dynamics in Logistics (LDIC) offers researchers and practitioners from logistics, operations research, production, industrial and electrical engineering as well as from computer science an opportunity to meet and to discuss the latest developments in this particular research domain. From February 12th to 14th 2020 for the seventh time, LDIC 2020 is held in Bremen, Germany. Similar to its six predecessors, the Bremen Research Cluster for Dynamics in Logistics (LogDynamics) organizes this conference. The spectrum of topics reaches from the dynamic modeling, planning and control of processes over supply chain management and maritime logistics to innovative technologies and robotic applications for cyber-physical production and logistics systems. LDIC 2020 provides a forum for the discussion of advances in that matter. The conference program consists of three invited keynote speeches and 51 papers selected by a severe double-blind reviewing process. Within these proceedings all the papers are published. By this, the proceedings give an interdisciplinary outline on the state of the art of dynamics in logistics as well as identify challenges and solutions for logistics today and tomorrow.
Publisher: Springer Nature
ISBN: 3030447839
Category : Technology & Engineering
Languages : en
Pages : 575
Book Description
Since 2007, the biennial International Conferences on Dynamics in Logistics (LDIC) offers researchers and practitioners from logistics, operations research, production, industrial and electrical engineering as well as from computer science an opportunity to meet and to discuss the latest developments in this particular research domain. From February 12th to 14th 2020 for the seventh time, LDIC 2020 is held in Bremen, Germany. Similar to its six predecessors, the Bremen Research Cluster for Dynamics in Logistics (LogDynamics) organizes this conference. The spectrum of topics reaches from the dynamic modeling, planning and control of processes over supply chain management and maritime logistics to innovative technologies and robotic applications for cyber-physical production and logistics systems. LDIC 2020 provides a forum for the discussion of advances in that matter. The conference program consists of three invited keynote speeches and 51 papers selected by a severe double-blind reviewing process. Within these proceedings all the papers are published. By this, the proceedings give an interdisciplinary outline on the state of the art of dynamics in logistics as well as identify challenges and solutions for logistics today and tomorrow.
Intelligent Monitoring, Control, and Security of Critical Infrastructure Systems
Author: Elias Kyriakides
Publisher: Springer
ISBN: 3662441608
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
This book describes the challenges that critical infrastructure systems face, and presents state of the art solutions to address them. How can we design intelligent systems or intelligent agents that can make appropriate real-time decisions in the management of such large-scale, complex systems? What are the primary challenges for critical infrastructure systems? The book also provides readers with the relevant information to recognize how important infrastructures are, and their role in connection with a society’s economy, security and prosperity. It goes on to describe state-of-the-art solutions to address these points, including new methodologies and instrumentation tools (e.g. embedded software and intelligent algorithms) for transforming and optimizing target infrastructures. The book is the most comprehensive resource to date for professionals in both the private and public sectors, while also offering an essential guide for students and researchers in the areas of modeling and analysis of critical infrastructure systems, monitoring, control, risk/impact evaluation, fault diagnosis, fault-tolerant control, and infrastructure dependencies/interdependencies. The importance of the research presented in the book is reflected in the fact that currently, for the first time in human history, more people live in cities than in rural areas, and that, by 2050, roughly 70% of the world’s total population is expected to live in cities.
Publisher: Springer
ISBN: 3662441608
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
This book describes the challenges that critical infrastructure systems face, and presents state of the art solutions to address them. How can we design intelligent systems or intelligent agents that can make appropriate real-time decisions in the management of such large-scale, complex systems? What are the primary challenges for critical infrastructure systems? The book also provides readers with the relevant information to recognize how important infrastructures are, and their role in connection with a society’s economy, security and prosperity. It goes on to describe state-of-the-art solutions to address these points, including new methodologies and instrumentation tools (e.g. embedded software and intelligent algorithms) for transforming and optimizing target infrastructures. The book is the most comprehensive resource to date for professionals in both the private and public sectors, while also offering an essential guide for students and researchers in the areas of modeling and analysis of critical infrastructure systems, monitoring, control, risk/impact evaluation, fault diagnosis, fault-tolerant control, and infrastructure dependencies/interdependencies. The importance of the research presented in the book is reflected in the fact that currently, for the first time in human history, more people live in cities than in rural areas, and that, by 2050, roughly 70% of the world’s total population is expected to live in cities.
Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions
Author: Harald Waschl
Publisher: Springer
ISBN: 331991569X
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
This book describes different methods that are relevant to the development and testing of control algorithms for advanced driver assistance systems (ADAS) and automated driving functions (ADF). These control algorithms need to respond safely, reliably and optimally in varying operating conditions. Also, vehicles have to comply with safety and emission legislation. The text describes how such control algorithms can be developed, tested and verified for use in real-world driving situations. Owing to the complex interaction of vehicles with the environment and different traffic participants, an almost infinite number of possible scenarios and situations that need to be considered may exist. The book explains new methods to address this complexity, with reference to human interaction modelling, various theoretical approaches to the definition of real-world scenarios, and with practically-oriented examples and contributions, to ensure efficient development and testing of ADAS and ADF. Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions is a collection of articles by international experts in the field representing theoretical and application-based points of view. As such, the methods and examples demonstrated in the book will be a valuable source of information for academic and industrial researchers, as well as for automotive companies and suppliers.
Publisher: Springer
ISBN: 331991569X
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
This book describes different methods that are relevant to the development and testing of control algorithms for advanced driver assistance systems (ADAS) and automated driving functions (ADF). These control algorithms need to respond safely, reliably and optimally in varying operating conditions. Also, vehicles have to comply with safety and emission legislation. The text describes how such control algorithms can be developed, tested and verified for use in real-world driving situations. Owing to the complex interaction of vehicles with the environment and different traffic participants, an almost infinite number of possible scenarios and situations that need to be considered may exist. The book explains new methods to address this complexity, with reference to human interaction modelling, various theoretical approaches to the definition of real-world scenarios, and with practically-oriented examples and contributions, to ensure efficient development and testing of ADAS and ADF. Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions is a collection of articles by international experts in the field representing theoretical and application-based points of view. As such, the methods and examples demonstrated in the book will be a valuable source of information for academic and industrial researchers, as well as for automotive companies and suppliers.
Application of Intelligent Systems in Multi-modal Information Analytics
Author: Vijayan Sugumaran
Publisher: Springer Nature
ISBN: 3030748111
Category : Technology & Engineering
Languages : en
Pages : 955
Book Description
This book provides comprehensive coverage of the latest advances and trends in information technology, science and engineering. Specifically, it addresses a number of broad themes, including multi-modal informatics, data mining, agent-based and multi-agent systems for health and education informatics, which inspire the development of intelligent information technologies. The contributions cover a wide range of topics such as AI applications and innovations in health and education informatics; data and knowledge management; multi-modal application management; and web/social media mining for multi-modal informatics. Outlining promising future research directions, the book is a valuable resource for students, researchers and professionals, and a useful reference guide for newcomers to the field. This book is a compilation of the papers presented in the 2021 International Conference on Multi-modal Information Analytics, held in Huhehaote, China, on April 23–24, 2021.
Publisher: Springer Nature
ISBN: 3030748111
Category : Technology & Engineering
Languages : en
Pages : 955
Book Description
This book provides comprehensive coverage of the latest advances and trends in information technology, science and engineering. Specifically, it addresses a number of broad themes, including multi-modal informatics, data mining, agent-based and multi-agent systems for health and education informatics, which inspire the development of intelligent information technologies. The contributions cover a wide range of topics such as AI applications and innovations in health and education informatics; data and knowledge management; multi-modal application management; and web/social media mining for multi-modal informatics. Outlining promising future research directions, the book is a valuable resource for students, researchers and professionals, and a useful reference guide for newcomers to the field. This book is a compilation of the papers presented in the 2021 International Conference on Multi-modal Information Analytics, held in Huhehaote, China, on April 23–24, 2021.
Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems
Author: Aparna Kumari
Publisher: Elsevier
ISBN: 0443238154
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems: Fundamentals, Technologies, and Solutions is an essential reference for energy researchers, graduate students and engineers who aim to understand the opportunities offered by artificial intelligence for the integration of electric vehicles into smart grids. This book begins by building foundational knowledge for the reader, covering the essentials of artificial intelligence and its applications for electric vehicles in a clear and holistic manner. Next, it breaks down two essential areas of application in more detail: energy management (from to energy harvesting to demand response and complex forecasting), and market strategies (including peer-to-peer, vehicle-to-vehicle, and vehicle-to-everything trading, plus the cyber-security implications). A final part provides detailed case studies and close consideration of challenges, including code and data sets for replication of techniques. Providing a clear pathway from fundamentals to practical implementation, Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems will provide multidisciplinary guidance for implementing this cutting-edge technology in the energy systems of the future. - Supports fundamental understanding of artificial intelligence and its opportunities for energy system specialists - Collects the real-world experiences of global experts - Enables practical implementation of artificial intelligence strategies that support renewable energy integration across energy systems, markets, and grids
Publisher: Elsevier
ISBN: 0443238154
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems: Fundamentals, Technologies, and Solutions is an essential reference for energy researchers, graduate students and engineers who aim to understand the opportunities offered by artificial intelligence for the integration of electric vehicles into smart grids. This book begins by building foundational knowledge for the reader, covering the essentials of artificial intelligence and its applications for electric vehicles in a clear and holistic manner. Next, it breaks down two essential areas of application in more detail: energy management (from to energy harvesting to demand response and complex forecasting), and market strategies (including peer-to-peer, vehicle-to-vehicle, and vehicle-to-everything trading, plus the cyber-security implications). A final part provides detailed case studies and close consideration of challenges, including code and data sets for replication of techniques. Providing a clear pathway from fundamentals to practical implementation, Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems will provide multidisciplinary guidance for implementing this cutting-edge technology in the energy systems of the future. - Supports fundamental understanding of artificial intelligence and its opportunities for energy system specialists - Collects the real-world experiences of global experts - Enables practical implementation of artificial intelligence strategies that support renewable energy integration across energy systems, markets, and grids