Decision Intelligence Solutions

Decision Intelligence Solutions PDF Author: Nitasha Hasteer
Publisher: Springer Nature
ISBN: 9819959942
Category : Technology & Engineering
Languages : en
Pages : 388

Get Book Here

Book Description
This book comprises the select peer-reviewed proceedings of the 3rd International Conference on Information Technology (InCITe-2023). It aims to provide a comprehensive and broad-spectrum picture of state-of-the-art research and development in decision intelligence, deep learning, machine learning, artificial intelligence, data science, and enabling technologies for IoT, blockchain, and other futuristic computational technologies. It covers various topics that span cutting-edge, collaborative technologies and areas of computation. The content would serve as a rich knowledge repository on information & communication technologies, neural networks, fuzzy systems, natural language processing, data mining & warehousing, big data analytics, cloud computing, security, social networks and intelligence, decision-making and modeling, information systems, and IT architectures. This book provides a valuable resource for those in academia and industry.

Decision Intelligence Solutions

Decision Intelligence Solutions PDF Author: Nitasha Hasteer
Publisher: Springer Nature
ISBN: 9819959942
Category : Technology & Engineering
Languages : en
Pages : 388

Get Book Here

Book Description
This book comprises the select peer-reviewed proceedings of the 3rd International Conference on Information Technology (InCITe-2023). It aims to provide a comprehensive and broad-spectrum picture of state-of-the-art research and development in decision intelligence, deep learning, machine learning, artificial intelligence, data science, and enabling technologies for IoT, blockchain, and other futuristic computational technologies. It covers various topics that span cutting-edge, collaborative technologies and areas of computation. The content would serve as a rich knowledge repository on information & communication technologies, neural networks, fuzzy systems, natural language processing, data mining & warehousing, big data analytics, cloud computing, security, social networks and intelligence, decision-making and modeling, information systems, and IT architectures. This book provides a valuable resource for those in academia and industry.

Decision Intelligence For Dummies

Decision Intelligence For Dummies PDF Author: Pamela Baker
Publisher: John Wiley & Sons
ISBN: 1119824842
Category : Computers
Languages : en
Pages : 323

Get Book Here

Book Description
Learn to use, and not be used by, data to make more insightful decisions The availability of data and various forms of AI unlock countless possibilities for business decision makers. But what do you do when you feel pressured to cede your position in the decision-making process altogether? Decision Intelligence For Dummies pumps the brakes on the growing trend to take human beings out of the decision loop and walks you through the best way to make data-informed but human-driven decisions. The book shows you how to achieve maximum flexibility by using every available resource, and not just raw data, to make the most insightful decisions possible. In this timely book, you’ll learn to: Make data a means to an end, rather than an end in itself, by expanding your decision-making inquiries Find a new path to solid decisions that includes, but isn’t dominated, by quantitative data Measure the results of your new framework to prove its effectiveness and efficiency and expand it to a whole team or company Perfect for business leaders in technology and finance, Decision Intelligence For Dummies is ideal for anyone who recognizes that data is not the only powerful tool in your decision-making toolbox. This book shows you how to be guided, and not ruled, by the data.

Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions

Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions PDF Author: Sucar, L. Enrique
Publisher: IGI Global
ISBN: 160960167X
Category : Computers
Languages : en
Pages : 444

Get Book Here

Book Description
One of the goals of artificial intelligence (AI) is creating autonomous agents that must make decisions based on uncertain and incomplete information. The goal is to design rational agents that must take the best action given the information available and their goals. Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions provides an introduction to different types of decision theory techniques, including MDPs, POMDPs, Influence Diagrams, and Reinforcement Learning, and illustrates their application in artificial intelligence. This book provides insights into the advantages and challenges of using decision theory models for developing intelligent systems.

Decision Intelligence

Decision Intelligence PDF Author: Miriam O'Callaghan
Publisher: CRC Press
ISBN: 1000880028
Category : Business & Economics
Languages : en
Pages : 280

Get Book Here

Book Description
Revealing the limitations of human decision-making, this book explores how Artificial Intelligence (AI) can be used to optimize decisions for improved business outcomes and efficiency, as well as looking ahead to the significant contributions Decision Intelligence (DI) can make to society and the ethical challenges it may raise. From the theories and concepts used to design autonomous intelligent agents to the technologies that power DI systems and the ways in which companies use decision-making building blocks to build DI solutions that enable businesses to democratize AI, this book presents an impressive framework to integrate artificial and human intelligence for the success of different types of business decisions. Replete with case studies on DI applications, as well as wider discussions on the social implications of the technology, Decision Intelligence: Human–Machine Integration for Decision Making appeals to both students of AI and data sciences and businesses considering DI adoption.

Learning to Learn

Learning to Learn PDF Author: Sebastian Thrun
Publisher: Springer Science & Business Media
ISBN: 1461555299
Category : Computers
Languages : en
Pages : 346

Get Book Here

Book Description
Over the past three decades or so, research on machine learning and data mining has led to a wide variety of algorithms that learn general functions from experience. As machine learning is maturing, it has begun to make the successful transition from academic research to various practical applications. Generic techniques such as decision trees and artificial neural networks, for example, are now being used in various commercial and industrial applications. Learning to Learn is an exciting new research direction within machine learning. Similar to traditional machine-learning algorithms, the methods described in Learning to Learn induce general functions from experience. However, the book investigates algorithms that can change the way they generalize, i.e., practice the task of learning itself, and improve on it. To illustrate the utility of learning to learn, it is worthwhile comparing machine learning with human learning. Humans encounter a continual stream of learning tasks. They do not just learn concepts or motor skills, they also learn bias, i.e., they learn how to generalize. As a result, humans are often able to generalize correctly from extremely few examples - often just a single example suffices to teach us a new thing. A deeper understanding of computer programs that improve their ability to learn can have a large practical impact on the field of machine learning and beyond. In recent years, the field has made significant progress towards a theory of learning to learn along with practical new algorithms, some of which led to impressive results in real-world applications. Learning to Learn provides a survey of some of the most exciting new research approaches, written by leading researchers in the field. Its objective is to investigate the utility and feasibility of computer programs that can learn how to learn, both from a practical and a theoretical point of view.

Business Intelligence, Reprint Edition

Business Intelligence, Reprint Edition PDF Author: Stacia Misner
Publisher: Microsoft Press
ISBN: 0735645833
Category :
Languages : en
Pages : 196

Get Book Here

Book Description
“This readable, practical book helps business people quickly understand what business intelligence is, how it works, where it's used, and why and when to use it—all illustrated by real case studies, not just theory.” Nigel Pendse Author of The OLAP Report www.olapreport.com So much information, so little time. All too often, business data is hard to get at and use—thus slowing decision-making to a crawl. This insightful book illustrates how organizations can make better, faster decisions about their customers, partners, and operations by turning mountains of data into valuable business information that’s always at the fingertips of decision makers. You’ll learn what’s involved in using business intelligence to bring together information, people, and technology to create successful business strategies—and how to execute those strategies with confidence. Topics covered include: THE BUSINESS INTELLIGENCE MINDSET: Discover the basics behind business intelligence, such as how it’s defined, why and how to use it in your organization, and what characteristics, components, and general architecture most business intelligence solutions share. THE CASE FOR BUSINESS INTELLIGENCE: Read how world leaders in finance, manufacturing, and retail have successfully implemented business intelligence solutions and see what benefits they have reaped. THE PRACTICE OF BUSINESS INTELLIGENCE: Find out what’s involved in implementing a business intelligence solution in your organization, including how to identify your business intelligence opportunities, what decisions you must make to get a business intelligence project going, and what to do to sustain the momentum so that you can continue to make sense of all the data you gather.

Artificial Intelligence Design and Solution for Risk and Security

Artificial Intelligence Design and Solution for Risk and Security PDF Author: Archie Addo
Publisher: Business Expert Press
ISBN: 1951527496
Category : Business & Economics
Languages : en
Pages : 95

Get Book Here

Book Description
Artificial Intelligence (AI) Design and Solutions for Risk and Security targets readers to understand, learn, define problems, and architect AI projects. Starting from current business architectures and business processes to futuristic architectures. Introduction to data analytics and life cycle includes data discovery, data preparation, data processing steps, model building, and operationalization are explained in detail. The authors examine the AI and ML algorithms in detail, which enables the readers to choose appropriate algorithms during designing solutions. Functional domains and industrial domains are also explained in detail. The takeaways are learning and applying designs and solutions to AI projects with risk and security implementation and knowledge about futuristic AI in five to ten years.

Artificial Intelligence Methods for Optimization of the Software Testing Process

Artificial Intelligence Methods for Optimization of the Software Testing Process PDF Author: Sahar Tahvili
Publisher: Academic Press
ISBN: 0323912826
Category : Computers
Languages : en
Pages : 232

Get Book Here

Book Description
Artificial Intelligence Methods for Optimization of the Software Testing Process: With Practical Examples and Exercises presents different AI-based solutions for overcoming the uncertainty found in many initial testing problems. The concept of intelligent decision making is presented as a multi-criteria, multi-objective undertaking. The book provides guidelines on how to manage diverse types of uncertainty with intelligent decision-making that can help subject matter experts in many industries improve various processes in a more efficient way. As the number of required test cases for testing a product can be large (in industry more than 10,000 test cases are usually created). Executing all these test cases without any particular order can impact the results of the test execution, hence this book fills the need for a comprehensive resource on the topics on the how's, what's and whys. To learn more about Elsevier's Series, Uncertainty, Computational Techniques and Decision Intelligence, please visit this link: https://www.elsevier.com/books-and-journals/book-series/uncertainty-computational-techniques-and-decision-intelligence - Presents one of the first empirical studies in the field, contrasting theoretical assumptions on innovations in a real industrial environment with a large set of use cases from developed and developing testing processes at various large industries - Explores specific comparative methodologies, focusing on developed and developing AI-based solutions - Serves as a guideline for conducting industrial research in the artificial intelligence and software testing domain - Explains all proposed solutions through real industrial case studies

Business Intelligence

Business Intelligence PDF Author: Carlo Vercellis
Publisher: John Wiley & Sons
ISBN: 1119965470
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.

Artificial Intelligence for Big Data

Artificial Intelligence for Big Data PDF Author: Anand Deshpande
Publisher: Packt Publishing Ltd
ISBN: 1788476018
Category : Computers
Languages : en
Pages : 371

Get Book Here

Book Description
Build next-generation Artificial Intelligence systems with Java Key Features Implement AI techniques to build smart applications using Deeplearning4j Perform big data analytics to derive quality insights using Spark MLlib Create self-learning systems using neural networks, NLP, and reinforcement learning Book Description In this age of big data, companies have larger amount of consumer data than ever before, far more than what the current technologies can ever hope to keep up with. However, Artificial Intelligence closes the gap by moving past human limitations in order to analyze data. With the help of Artificial Intelligence for big data, you will learn to use Machine Learning algorithms such as k-means, SVM, RBF, and regression to perform advanced data analysis. You will understand the current status of Machine and Deep Learning techniques to work on Genetic and Neuro-Fuzzy algorithms. In addition, you will explore how to develop Artificial Intelligence algorithms to learn from data, why they are necessary, and how they can help solve real-world problems. By the end of this book, you'll have learned how to implement various Artificial Intelligence algorithms for your big data systems and integrate them into your product offerings such as reinforcement learning, natural language processing, image recognition, genetic algorithms, and fuzzy logic systems. What you will learn Manage Artificial Intelligence techniques for big data with Java Build smart systems to analyze data for enhanced customer experience Learn to use Artificial Intelligence frameworks for big data Understand complex problems with algorithms and Neuro-Fuzzy systems Design stratagems to leverage data using Machine Learning process Apply Deep Learning techniques to prepare data for modeling Construct models that learn from data using open source tools Analyze big data problems using scalable Machine Learning algorithms Who this book is for This book is for you if you are a data scientist, big data professional, or novice who has basic knowledge of big data and wish to get proficiency in Artificial Intelligence techniques for big data. Some competence in mathematics is an added advantage in the field of elementary linear algebra and calculus.