Spark: The Definitive Guide

Spark: The Definitive Guide PDF Author: Bill Chambers
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912294
Category : Computers
Languages : en
Pages : 594

Get Book Here

Book Description
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation

Spark: The Definitive Guide

Spark: The Definitive Guide PDF Author: Bill Chambers
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912294
Category : Computers
Languages : en
Pages : 594

Get Book Here

Book Description
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation

Learning Spark

Learning Spark PDF Author: Jules S. Damji
Publisher: O'Reilly Media
ISBN: 1492050016
Category : Computers
Languages : en
Pages : 400

Get Book Here

Book Description
Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow

Practical Apache Spark

Practical Apache Spark PDF Author: Subhashini Chellappan
Publisher: Apress
ISBN: 1484236521
Category : Computers
Languages : en
Pages : 288

Get Book Here

Book Description
Work with Apache Spark using Scala to deploy and set up single-node, multi-node, and high-availability clusters. This book discusses various components of Spark such as Spark Core, DataFrames, Datasets and SQL, Spark Streaming, Spark MLib, and R on Spark with the help of practical code snippets for each topic. Practical Apache Spark also covers the integration of Apache Spark with Kafka with examples. You’ll follow a learn-to-do-by-yourself approach to learning – learn the concepts, practice the code snippets in Scala, and complete the assignments given to get an overall exposure. On completion, you’ll have knowledge of the functional programming aspects of Scala, and hands-on expertise in various Spark components. You’ll also become familiar with machine learning algorithms with real-time usage. What You Will LearnDiscover the functional programming features of Scala Understand the complete architecture of Spark and its componentsIntegrate Apache Spark with Hive and Kafka Use Spark SQL, DataFrames, and Datasets to process data using traditional SQL queries Work with different machine learning concepts and libraries using Spark's MLlib packages Who This Book Is For Developers and professionals who deal with batch and stream data processing.

Databricks Certified Associate Developer for Apache Spark Using Python

Databricks Certified Associate Developer for Apache Spark Using Python PDF Author: Saba Shah
Publisher: Packt Publishing Ltd
ISBN: 1804616206
Category : Computers
Languages : en
Pages : 274

Get Book Here

Book Description
Learn the concepts and exercises needed to confidently prepare for the Databricks Associate Developer for Apache Spark 3.0 exam and validate your Spark skills with an industry-recognized credential Key Features Understand the fundamentals of Apache Spark to design robust and fast Spark applications Explore various data manipulation components for each phase of your data engineering project Prepare for the certification exam with sample questions and mock exams Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionSpark has become a de facto standard for big data processing. Migrating data processing to Spark saves resources, streamlines your business focus, and modernizes workloads, creating new business opportunities through Spark’s advanced capabilities. Written by a senior solutions architect at Databricks, with experience in leading data science and data engineering teams in Fortune 500s as well as startups, this book is your exhaustive guide to achieving the Databricks Certified Associate Developer for Apache Spark certification on your first attempt. You’ll explore the core components of Apache Spark, its architecture, and its optimization, while familiarizing yourself with the Spark DataFrame API and its components needed for data manipulation. You’ll also find out what Spark streaming is and why it’s important for modern data stacks, before learning about machine learning in Spark and its different use cases. What’s more, you’ll discover sample questions at the end of each section along with two mock exams to help you prepare for the certification exam. By the end of this book, you’ll know what to expect in the exam and gain enough understanding of Spark and its tools to pass the exam. You’ll also be able to apply this knowledge in a real-world setting and take your skillset to the next level.What you will learn Create and manipulate SQL queries in Apache Spark Build complex Spark functions using Spark's user-defined functions (UDFs) Architect big data apps with Spark fundamentals for optimal design Apply techniques to manipulate and optimize big data applications Develop real-time or near-real-time applications using Spark Streaming Work with Apache Spark for machine learning applications Who this book is for This book is for data professionals such as data engineers, data analysts, BI developers, and data scientists looking for a comprehensive resource to achieve Databricks Certified Associate Developer certification, as well as for individuals who want to venture into the world of big data and data engineering. Although working knowledge of Python is required, no prior knowledge of Spark is necessary. Additionally, experience with Pyspark will be beneficial.

Frank Kane's Taming Big Data with Apache Spark and Python

Frank Kane's Taming Big Data with Apache Spark and Python PDF Author: Frank Kane
Publisher: Packt Publishing Ltd
ISBN: 1787288307
Category : Computers
Languages : en
Pages : 289

Get Book Here

Book Description
Frank Kane's hands-on Spark training course, based on his bestselling Taming Big Data with Apache Spark and Python video, now available in a book. Understand and analyze large data sets using Spark on a single system or on a cluster. About This Book Understand how Spark can be distributed across computing clusters Develop and run Spark jobs efficiently using Python A hands-on tutorial by Frank Kane with over 15 real-world examples teaching you Big Data processing with Spark Who This Book Is For If you are a data scientist or data analyst who wants to learn Big Data processing using Apache Spark and Python, this book is for you. If you have some programming experience in Python, and want to learn how to process large amounts of data using Apache Spark, Frank Kane's Taming Big Data with Apache Spark and Python will also help you. What You Will Learn Find out how you can identify Big Data problems as Spark problems Install and run Apache Spark on your computer or on a cluster Analyze large data sets across many CPUs using Spark's Resilient Distributed Datasets Implement machine learning on Spark using the MLlib library Process continuous streams of data in real time using the Spark streaming module Perform complex network analysis using Spark's GraphX library Use Amazon's Elastic MapReduce service to run your Spark jobs on a cluster In Detail Frank Kane's Taming Big Data with Apache Spark and Python is your companion to learning Apache Spark in a hands-on manner. Frank will start you off by teaching you how to set up Spark on a single system or on a cluster, and you'll soon move on to analyzing large data sets using Spark RDD, and developing and running effective Spark jobs quickly using Python. Apache Spark has emerged as the next big thing in the Big Data domain – quickly rising from an ascending technology to an established superstar in just a matter of years. Spark allows you to quickly extract actionable insights from large amounts of data, on a real-time basis, making it an essential tool in many modern businesses. Frank has packed this book with over 15 interactive, fun-filled examples relevant to the real world, and he will empower you to understand the Spark ecosystem and implement production-grade real-time Spark projects with ease. Style and approach Frank Kane's Taming Big Data with Apache Spark and Python is a hands-on tutorial with over 15 real-world examples carefully explained by Frank in a step-by-step manner. The examples vary in complexity, and you can move through them at your own pace.

Learning PySpark

Learning PySpark PDF Author: Tomasz Drabas
Publisher: Packt Publishing Ltd
ISBN: 1786466252
Category : Computers
Languages : en
Pages : 273

Get Book Here

Book Description
Build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0 About This Book Learn why and how you can efficiently use Python to process data and build machine learning models in Apache Spark 2.0 Develop and deploy efficient, scalable real-time Spark solutions Take your understanding of using Spark with Python to the next level with this jump start guide Who This Book Is For If you are a Python developer who wants to learn about the Apache Spark 2.0 ecosystem, this book is for you. A firm understanding of Python is expected to get the best out of the book. Familiarity with Spark would be useful, but is not mandatory. What You Will Learn Learn about Apache Spark and the Spark 2.0 architecture Build and interact with Spark DataFrames using Spark SQL Learn how to solve graph and deep learning problems using GraphFrames and TensorFrames respectively Read, transform, and understand data and use it to train machine learning models Build machine learning models with MLlib and ML Learn how to submit your applications programmatically using spark-submit Deploy locally built applications to a cluster In Detail Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. This book will show you how to leverage the power of Python and put it to use in the Spark ecosystem. You will start by getting a firm understanding of the Spark 2.0 architecture and how to set up a Python environment for Spark. You will get familiar with the modules available in PySpark. You will learn how to abstract data with RDDs and DataFrames and understand the streaming capabilities of PySpark. Also, you will get a thorough overview of machine learning capabilities of PySpark using ML and MLlib, graph processing using GraphFrames, and polyglot persistence using Blaze. Finally, you will learn how to deploy your applications to the cloud using the spark-submit command. By the end of this book, you will have established a firm understanding of the Spark Python API and how it can be used to build data-intensive applications. Style and approach This book takes a very comprehensive, step-by-step approach so you understand how the Spark ecosystem can be used with Python to develop efficient, scalable solutions. Every chapter is standalone and written in a very easy-to-understand manner, with a focus on both the hows and the whys of each concept.

Apache Superset Quick Start Guide

Apache Superset Quick Start Guide PDF Author: Shashank Shekhar
Publisher: Packt Publishing Ltd
ISBN: 1788999568
Category : Computers
Languages : en
Pages : 184

Get Book Here

Book Description
Integrate open source data analytics and build business intelligence on SQL databases with Apache Superset. The quick, intuitive nature for data visualization in a web application makes it easy for creating interactive dashboards. Key FeaturesWork with Apache Superset's rich set of data visualizationsCreate interactive dashboards and data storytellingEasily explore dataBook Description Apache Superset is a modern, open source, enterprise-ready business intelligence (BI) web application. With the help of this book, you will see how Superset integrates with popular databases like Postgres, Google BigQuery, Snowflake, and MySQL. You will learn to create real time data visualizations and dashboards on modern web browsers for your organization using Superset. First, we look at the fundamentals of Superset, and then get it up and running. You'll go through the requisite installation, configuration, and deployment. Then, we will discuss different columnar data types, analytics, and the visualizations available. You'll also see the security tools available to the administrator to keep your data safe. You will learn how to visualize relationships as graphs instead of coordinates on plain orthogonal axes. This will help you when you upload your own entity relationship dataset and analyze the dataset in new, different ways. You will also see how to analyze geographical regions by working with location data. Finally, we cover a set of tutorials on dashboard designs frequently used by analysts, business intelligence professionals, and developers. What you will learnGet to grips with the fundamentals of data exploration using SupersetSet up a working instance of Superset on cloud services like Google Compute EngineIntegrate Superset with SQL databasesBuild dashboards with SupersetCalculate statistics in Superset for numerical, categorical, or text dataUnderstand visualization techniques, filtering, and grouping by aggregationManage user roles and permissions in SupersetWork with SQL LabWho this book is for This book is for data analysts, BI professionals, and developers who want to learn Apache Superset. If you want to create interactive dashboards from SQL databases, this book is what you need. Working knowledge of Python will be an advantage but not necessary to understand this book.

Apache Spark for Data Science Cookbook

Apache Spark for Data Science Cookbook PDF Author: Padma Priya Chitturi
Publisher: Packt Publishing Ltd
ISBN: 1785288806
Category : Computers
Languages : en
Pages : 388

Get Book Here

Book Description
Over insightful 90 recipes to get lightning-fast analytics with Apache Spark About This Book Use Apache Spark for data processing with these hands-on recipes Implement end-to-end, large-scale data analysis better than ever before Work with powerful libraries such as MLLib, SciPy, NumPy, and Pandas to gain insights from your data Who This Book Is For This book is for novice and intermediate level data science professionals and data analysts who want to solve data science problems with a distributed computing framework. Basic experience with data science implementation tasks is expected. Data science professionals looking to skill up and gain an edge in the field will find this book helpful. What You Will Learn Explore the topics of data mining, text mining, Natural Language Processing, information retrieval, and machine learning. Solve real-world analytical problems with large data sets. Address data science challenges with analytical tools on a distributed system like Spark (apt for iterative algorithms), which offers in-memory processing and more flexibility for data analysis at scale. Get hands-on experience with algorithms like Classification, regression, and recommendation on real datasets using Spark MLLib package. Learn about numerical and scientific computing using NumPy and SciPy on Spark. Use Predictive Model Markup Language (PMML) in Spark for statistical data mining models. In Detail Spark has emerged as the most promising big data analytics engine for data science professionals. The true power and value of Apache Spark lies in its ability to execute data science tasks with speed and accuracy. Spark's selling point is that it combines ETL, batch analytics, real-time stream analysis, machine learning, graph processing, and visualizations. It lets you tackle the complexities that come with raw unstructured data sets with ease. This guide will get you comfortable and confident performing data science tasks with Spark. You will learn about implementations including distributed deep learning, numerical computing, and scalable machine learning. You will be shown effective solutions to problematic concepts in data science using Spark's data science libraries such as MLLib, Pandas, NumPy, SciPy, and more. These simple and efficient recipes will show you how to implement algorithms and optimize your work. Style and approach This book contains a comprehensive range of recipes designed to help you learn the fundamentals and tackle the difficulties of data science. This book outlines practical steps to produce powerful insights into Big Data through a recipe-based approach.

Apache Mahout

Apache Mahout PDF Author: Dmitriy Lyubimov
Publisher:
ISBN: 9781523775781
Category :
Languages : en
Pages : 232

Get Book Here

Book Description
Apache Mahout: Beyond MapReduce. Distributed algorithm design This book is about designing mathematical and Machine Learning algorithms using the Apache Mahout "Samsara" platform. The material takes on best programming practices as well as conceptual approaches to attacking Machine Learning problems in big datasets. Math is explained, followed by code examples of distributed and in-memory computations. Written by Apache Mahout committers for people who want to learn how to design distributed math algorithms as well as how to use some of the new Mahout "Samsara" algorithms off-the-shelf. The book covers Apache Mahout 0.10 and 0.11.

Apache Spark 2.x for Java Developers

Apache Spark 2.x for Java Developers PDF Author: Sourav Gulati
Publisher: Packt Publishing Ltd
ISBN: 178712942X
Category : Computers
Languages : en
Pages : 338

Get Book Here

Book Description
Unleash the data processing and analytics capability of Apache Spark with the language of choice: Java About This Book Perform big data processing with Spark—without having to learn Scala! Use the Spark Java API to implement efficient enterprise-grade applications for data processing and analytics Go beyond mainstream data processing by adding querying capability, Machine Learning, and graph processing using Spark Who This Book Is For If you are a Java developer interested in learning to use the popular Apache Spark framework, this book is the resource you need to get started. Apache Spark developers who are looking to build enterprise-grade applications in Java will also find this book very useful. What You Will Learn Process data using different file formats such as XML, JSON, CSV, and plain and delimited text, using the Spark core Library. Perform analytics on data from various data sources such as Kafka, and Flume using Spark Streaming Library Learn SQL schema creation and the analysis of structured data using various SQL functions including Windowing functions in the Spark SQL Library Explore Spark Mlib APIs while implementing Machine Learning techniques to solve real-world problems Get to know Spark GraphX so you understand various graph-based analytics that can be performed with Spark In Detail Apache Spark is the buzzword in the big data industry right now, especially with the increasing need for real-time streaming and data processing. While Spark is built on Scala, the Spark Java API exposes all the Spark features available in the Scala version for Java developers. This book will show you how you can implement various functionalities of the Apache Spark framework in Java, without stepping out of your comfort zone. The book starts with an introduction to the Apache Spark 2.x ecosystem, followed by explaining how to install and configure Spark, and refreshes the Java concepts that will be useful to you when consuming Apache Spark's APIs. You will explore RDD and its associated common Action and Transformation Java APIs, set up a production-like clustered environment, and work with Spark SQL. Moving on, you will perform near-real-time processing with Spark streaming, Machine Learning analytics with Spark MLlib, and graph processing with GraphX, all using various Java packages. By the end of the book, you will have a solid foundation in implementing components in the Spark framework in Java to build fast, real-time applications. Style and approach This practical guide teaches readers the fundamentals of the Apache Spark framework and how to implement components using the Java language. It is a unique blend of theory and practical examples, and is written in a way that will gradually build your knowledge of Apache Spark.