Author: Nicholas A Heard
Publisher: World Scientific
ISBN: 178634565X
Category : Computers
Languages : en
Pages : 305
Book Description
Cyber-security is a matter of rapidly growing importance in industry and government. This book provides insight into a range of data science techniques for addressing these pressing concerns.The application of statistical and broader data science techniques provides an exciting growth area in the design of cyber defences. Networks of connected devices, such as enterprise computer networks or the wider so-called Internet of Things, are all vulnerable to misuse and attack, and data science methods offer the promise to detect such behaviours from the vast collections of cyber traffic data sources that can be obtained. In many cases, this is achieved through anomaly detection of unusual behaviour against understood statistical models of normality.This volume presents contributed papers from an international conference of the same name held at Imperial College. Experts from the field have provided their latest discoveries and review state of the art technologies.
Data Science For Cyber-security
Author: Nicholas A Heard
Publisher: World Scientific
ISBN: 178634565X
Category : Computers
Languages : en
Pages : 305
Book Description
Cyber-security is a matter of rapidly growing importance in industry and government. This book provides insight into a range of data science techniques for addressing these pressing concerns.The application of statistical and broader data science techniques provides an exciting growth area in the design of cyber defences. Networks of connected devices, such as enterprise computer networks or the wider so-called Internet of Things, are all vulnerable to misuse and attack, and data science methods offer the promise to detect such behaviours from the vast collections of cyber traffic data sources that can be obtained. In many cases, this is achieved through anomaly detection of unusual behaviour against understood statistical models of normality.This volume presents contributed papers from an international conference of the same name held at Imperial College. Experts from the field have provided their latest discoveries and review state of the art technologies.
Publisher: World Scientific
ISBN: 178634565X
Category : Computers
Languages : en
Pages : 305
Book Description
Cyber-security is a matter of rapidly growing importance in industry and government. This book provides insight into a range of data science techniques for addressing these pressing concerns.The application of statistical and broader data science techniques provides an exciting growth area in the design of cyber defences. Networks of connected devices, such as enterprise computer networks or the wider so-called Internet of Things, are all vulnerable to misuse and attack, and data science methods offer the promise to detect such behaviours from the vast collections of cyber traffic data sources that can be obtained. In many cases, this is achieved through anomaly detection of unusual behaviour against understood statistical models of normality.This volume presents contributed papers from an international conference of the same name held at Imperial College. Experts from the field have provided their latest discoveries and review state of the art technologies.
Cybersecurity Data Science
Author: Scott Mongeau
Publisher:
ISBN: 9783030748975
Category :
Languages : en
Pages : 0
Book Description
This book encompasses a systematic exploration of Cybersecurity Data Science (CSDS) as an emerging profession, focusing on current versus idealized practice. This book also analyzes challenges facing the emerging CSDS profession, diagnoses key gaps, and prescribes treatments to facilitate advancement. Grounded in the management of information systems (MIS) discipline, insights derive from literature analysis and interviews with 50 global CSDS practitioners. CSDS as a diagnostic process grounded in the scientific method is emphasized throughout Cybersecurity Data Science (CSDS) is a rapidly evolving discipline which applies data science methods to cybersecurity challenges. CSDS reflects the rising interest in applying data-focused statistical, analytical, and machine learning-driven methods to address growing security gaps. This book offers a systematic assessment of the developing domain. Advocacy is provided to strengthen professional rigor and best practices in the emerging CSDS profession. This book will be of interest to a range of professionals associated with cybersecurity and data science, spanning practitioner, commercial, public sector, and academic domains. Best practices framed will be of interest to CSDS practitioners, security professionals, risk management stewards, and institutional stakeholders. Organizational and industry perspectives will be of interest to cybersecurity analysts, managers, planners, strategists, and regulators. Research professionals and academics are presented with a systematic analysis of the CSDS field, including an overview of the state of the art, a structured evaluation of key challenges, recommended best practices, and an extensive bibliography.
Publisher:
ISBN: 9783030748975
Category :
Languages : en
Pages : 0
Book Description
This book encompasses a systematic exploration of Cybersecurity Data Science (CSDS) as an emerging profession, focusing on current versus idealized practice. This book also analyzes challenges facing the emerging CSDS profession, diagnoses key gaps, and prescribes treatments to facilitate advancement. Grounded in the management of information systems (MIS) discipline, insights derive from literature analysis and interviews with 50 global CSDS practitioners. CSDS as a diagnostic process grounded in the scientific method is emphasized throughout Cybersecurity Data Science (CSDS) is a rapidly evolving discipline which applies data science methods to cybersecurity challenges. CSDS reflects the rising interest in applying data-focused statistical, analytical, and machine learning-driven methods to address growing security gaps. This book offers a systematic assessment of the developing domain. Advocacy is provided to strengthen professional rigor and best practices in the emerging CSDS profession. This book will be of interest to a range of professionals associated with cybersecurity and data science, spanning practitioner, commercial, public sector, and academic domains. Best practices framed will be of interest to CSDS practitioners, security professionals, risk management stewards, and institutional stakeholders. Organizational and industry perspectives will be of interest to cybersecurity analysts, managers, planners, strategists, and regulators. Research professionals and academics are presented with a systematic analysis of the CSDS field, including an overview of the state of the art, a structured evaluation of key challenges, recommended best practices, and an extensive bibliography.
Secure Data Science
Author: Bhavani Thuraisingham
Publisher: CRC Press
ISBN: 1000557510
Category : Computers
Languages : en
Pages : 430
Book Description
Secure data science, which integrates cyber security and data science, is becoming one of the critical areas in both cyber security and data science. This is because the novel data science techniques being developed have applications in solving such cyber security problems as intrusion detection, malware analysis, and insider threat detection. However, the data science techniques being applied not only for cyber security but also for every application area—including healthcare, finance, manufacturing, and marketing—could be attacked by malware. Furthermore, due to the power of data science, it is now possible to infer highly private and sensitive information from public data, which could result in the violation of individual privacy. This is the first such book that provides a comprehensive overview of integrating both cyber security and data science and discusses both theory and practice in secure data science. After an overview of security and privacy for big data services as well as cloud computing, this book describes applications of data science for cyber security applications. It also discusses such applications of data science as malware analysis and insider threat detection. Then this book addresses trends in adversarial machine learning and provides solutions to the attacks on the data science techniques. In particular, it discusses some emerging trends in carrying out trustworthy analytics so that the analytics techniques can be secured against malicious attacks. Then it focuses on the privacy threats due to the collection of massive amounts of data and potential solutions. Following a discussion on the integration of services computing, including cloud-based services for secure data science, it looks at applications of secure data science to information sharing and social media. This book is a useful resource for researchers, software developers, educators, and managers who want to understand both the high level concepts and the technical details on the design and implementation of secure data science-based systems. It can also be used as a reference book for a graduate course in secure data science. Furthermore, this book provides numerous references that would be helpful for the reader to get more details about secure data science.
Publisher: CRC Press
ISBN: 1000557510
Category : Computers
Languages : en
Pages : 430
Book Description
Secure data science, which integrates cyber security and data science, is becoming one of the critical areas in both cyber security and data science. This is because the novel data science techniques being developed have applications in solving such cyber security problems as intrusion detection, malware analysis, and insider threat detection. However, the data science techniques being applied not only for cyber security but also for every application area—including healthcare, finance, manufacturing, and marketing—could be attacked by malware. Furthermore, due to the power of data science, it is now possible to infer highly private and sensitive information from public data, which could result in the violation of individual privacy. This is the first such book that provides a comprehensive overview of integrating both cyber security and data science and discusses both theory and practice in secure data science. After an overview of security and privacy for big data services as well as cloud computing, this book describes applications of data science for cyber security applications. It also discusses such applications of data science as malware analysis and insider threat detection. Then this book addresses trends in adversarial machine learning and provides solutions to the attacks on the data science techniques. In particular, it discusses some emerging trends in carrying out trustworthy analytics so that the analytics techniques can be secured against malicious attacks. Then it focuses on the privacy threats due to the collection of massive amounts of data and potential solutions. Following a discussion on the integration of services computing, including cloud-based services for secure data science, it looks at applications of secure data science to information sharing and social media. This book is a useful resource for researchers, software developers, educators, and managers who want to understand both the high level concepts and the technical details on the design and implementation of secure data science-based systems. It can also be used as a reference book for a graduate course in secure data science. Furthermore, this book provides numerous references that would be helpful for the reader to get more details about secure data science.
Malware Data Science
Author: Joshua Saxe
Publisher: No Starch Press
ISBN: 1593278594
Category : Computers
Languages : en
Pages : 274
Book Description
Malware Data Science explains how to identify, analyze, and classify large-scale malware using machine learning and data visualization. Security has become a "big data" problem. The growth rate of malware has accelerated to tens of millions of new files per year while our networks generate an ever-larger flood of security-relevant data each day. In order to defend against these advanced attacks, you'll need to know how to think like a data scientist. In Malware Data Science, security data scientist Joshua Saxe introduces machine learning, statistics, social network analysis, and data visualization, and shows you how to apply these methods to malware detection and analysis. You'll learn how to: - Analyze malware using static analysis - Observe malware behavior using dynamic analysis - Identify adversary groups through shared code analysis - Catch 0-day vulnerabilities by building your own machine learning detector - Measure malware detector accuracy - Identify malware campaigns, trends, and relationships through data visualization Whether you're a malware analyst looking to add skills to your existing arsenal, or a data scientist interested in attack detection and threat intelligence, Malware Data Science will help you stay ahead of the curve.
Publisher: No Starch Press
ISBN: 1593278594
Category : Computers
Languages : en
Pages : 274
Book Description
Malware Data Science explains how to identify, analyze, and classify large-scale malware using machine learning and data visualization. Security has become a "big data" problem. The growth rate of malware has accelerated to tens of millions of new files per year while our networks generate an ever-larger flood of security-relevant data each day. In order to defend against these advanced attacks, you'll need to know how to think like a data scientist. In Malware Data Science, security data scientist Joshua Saxe introduces machine learning, statistics, social network analysis, and data visualization, and shows you how to apply these methods to malware detection and analysis. You'll learn how to: - Analyze malware using static analysis - Observe malware behavior using dynamic analysis - Identify adversary groups through shared code analysis - Catch 0-day vulnerabilities by building your own machine learning detector - Measure malware detector accuracy - Identify malware campaigns, trends, and relationships through data visualization Whether you're a malware analyst looking to add skills to your existing arsenal, or a data scientist interested in attack detection and threat intelligence, Malware Data Science will help you stay ahead of the curve.
Deep Learning Applications for Cyber Security
Author: Mamoun Alazab
Publisher: Springer
ISBN: 3030130576
Category : Computers
Languages : en
Pages : 260
Book Description
Cybercrime remains a growing challenge in terms of security and privacy practices. Working together, deep learning and cyber security experts have recently made significant advances in the fields of intrusion detection, malicious code analysis and forensic identification. This book addresses questions of how deep learning methods can be used to advance cyber security objectives, including detection, modeling, monitoring and analysis of as well as defense against various threats to sensitive data and security systems. Filling an important gap between deep learning and cyber security communities, it discusses topics covering a wide range of modern and practical deep learning techniques, frameworks and development tools to enable readers to engage with the cutting-edge research across various aspects of cyber security. The book focuses on mature and proven techniques, and provides ample examples to help readers grasp the key points.
Publisher: Springer
ISBN: 3030130576
Category : Computers
Languages : en
Pages : 260
Book Description
Cybercrime remains a growing challenge in terms of security and privacy practices. Working together, deep learning and cyber security experts have recently made significant advances in the fields of intrusion detection, malicious code analysis and forensic identification. This book addresses questions of how deep learning methods can be used to advance cyber security objectives, including detection, modeling, monitoring and analysis of as well as defense against various threats to sensitive data and security systems. Filling an important gap between deep learning and cyber security communities, it discusses topics covering a wide range of modern and practical deep learning techniques, frameworks and development tools to enable readers to engage with the cutting-edge research across various aspects of cyber security. The book focuses on mature and proven techniques, and provides ample examples to help readers grasp the key points.
Cybersecurity Analytics
Author: Rakesh M. Verma
Publisher: CRC Press
ISBN: 1000727653
Category : Mathematics
Languages : en
Pages : 357
Book Description
Cybersecurity Analytics is for the cybersecurity student and professional who wants to learn data science techniques critical for tackling cybersecurity challenges, and for the data science student and professional who wants to learn about cybersecurity adaptations. Trying to build a malware detector, a phishing email detector, or just interested in finding patterns in your datasets? This book can let you do it on your own. Numerous examples and datasets links are included so that the reader can "learn by doing." Anyone with a basic college-level calculus course and some probability knowledge can easily understand most of the material. The book includes chapters containing: unsupervised learning, semi-supervised learning, supervised learning, text mining, natural language processing, and more. It also includes background on security, statistics, and linear algebra. The website for the book contains a listing of datasets, updates, and other resources for serious practitioners.
Publisher: CRC Press
ISBN: 1000727653
Category : Mathematics
Languages : en
Pages : 357
Book Description
Cybersecurity Analytics is for the cybersecurity student and professional who wants to learn data science techniques critical for tackling cybersecurity challenges, and for the data science student and professional who wants to learn about cybersecurity adaptations. Trying to build a malware detector, a phishing email detector, or just interested in finding patterns in your datasets? This book can let you do it on your own. Numerous examples and datasets links are included so that the reader can "learn by doing." Anyone with a basic college-level calculus course and some probability knowledge can easily understand most of the material. The book includes chapters containing: unsupervised learning, semi-supervised learning, supervised learning, text mining, natural language processing, and more. It also includes background on security, statistics, and linear algebra. The website for the book contains a listing of datasets, updates, and other resources for serious practitioners.
Machine Learning and Security
Author: Clarence Chio
Publisher: "O'Reilly Media, Inc."
ISBN: 1491979852
Category : Computers
Languages : en
Pages : 394
Book Description
Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters Quickly detect anomalies, including breaches, fraud, and impending system failure Conduct malware analysis by extracting useful information from computer binaries Uncover attackers within the network by finding patterns inside datasets Examine how attackers exploit consumer-facing websites and app functionality Translate your machine learning algorithms from the lab to production Understand the threat attackers pose to machine learning solutions
Publisher: "O'Reilly Media, Inc."
ISBN: 1491979852
Category : Computers
Languages : en
Pages : 394
Book Description
Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters Quickly detect anomalies, including breaches, fraud, and impending system failure Conduct malware analysis by extracting useful information from computer binaries Uncover attackers within the network by finding patterns inside datasets Examine how attackers exploit consumer-facing websites and app functionality Translate your machine learning algorithms from the lab to production Understand the threat attackers pose to machine learning solutions
Hands-On Machine Learning for Cybersecurity
Author: Soma Halder
Publisher: Packt Publishing Ltd
ISBN: 178899096X
Category : Computers
Languages : en
Pages : 306
Book Description
Get into the world of smart data security using machine learning algorithms and Python libraries Key FeaturesLearn machine learning algorithms and cybersecurity fundamentalsAutomate your daily workflow by applying use cases to many facets of securityImplement smart machine learning solutions to detect various cybersecurity problemsBook Description Cyber threats today are one of the costliest losses that an organization can face. In this book, we use the most efficient tool to solve the big problems that exist in the cybersecurity domain. The book begins by giving you the basics of ML in cybersecurity using Python and its libraries. You will explore various ML domains (such as time series analysis and ensemble modeling) to get your foundations right. You will implement various examples such as building system to identify malicious URLs, and building a program to detect fraudulent emails and spam. Later, you will learn how to make effective use of K-means algorithm to develop a solution to detect and alert you to any malicious activity in the network. Also learn how to implement biometrics and fingerprint to validate whether the user is a legitimate user or not. Finally, you will see how we change the game with TensorFlow and learn how deep learning is effective for creating models and training systems What you will learnUse machine learning algorithms with complex datasets to implement cybersecurity conceptsImplement machine learning algorithms such as clustering, k-means, and Naive Bayes to solve real-world problemsLearn to speed up a system using Python libraries with NumPy, Scikit-learn, and CUDAUnderstand how to combat malware, detect spam, and fight financial fraud to mitigate cyber crimesUse TensorFlow in the cybersecurity domain and implement real-world examplesLearn how machine learning and Python can be used in complex cyber issuesWho this book is for This book is for the data scientists, machine learning developers, security researchers, and anyone keen to apply machine learning to up-skill computer security. Having some working knowledge of Python and being familiar with the basics of machine learning and cybersecurity fundamentals will help to get the most out of the book
Publisher: Packt Publishing Ltd
ISBN: 178899096X
Category : Computers
Languages : en
Pages : 306
Book Description
Get into the world of smart data security using machine learning algorithms and Python libraries Key FeaturesLearn machine learning algorithms and cybersecurity fundamentalsAutomate your daily workflow by applying use cases to many facets of securityImplement smart machine learning solutions to detect various cybersecurity problemsBook Description Cyber threats today are one of the costliest losses that an organization can face. In this book, we use the most efficient tool to solve the big problems that exist in the cybersecurity domain. The book begins by giving you the basics of ML in cybersecurity using Python and its libraries. You will explore various ML domains (such as time series analysis and ensemble modeling) to get your foundations right. You will implement various examples such as building system to identify malicious URLs, and building a program to detect fraudulent emails and spam. Later, you will learn how to make effective use of K-means algorithm to develop a solution to detect and alert you to any malicious activity in the network. Also learn how to implement biometrics and fingerprint to validate whether the user is a legitimate user or not. Finally, you will see how we change the game with TensorFlow and learn how deep learning is effective for creating models and training systems What you will learnUse machine learning algorithms with complex datasets to implement cybersecurity conceptsImplement machine learning algorithms such as clustering, k-means, and Naive Bayes to solve real-world problemsLearn to speed up a system using Python libraries with NumPy, Scikit-learn, and CUDAUnderstand how to combat malware, detect spam, and fight financial fraud to mitigate cyber crimesUse TensorFlow in the cybersecurity domain and implement real-world examplesLearn how machine learning and Python can be used in complex cyber issuesWho this book is for This book is for the data scientists, machine learning developers, security researchers, and anyone keen to apply machine learning to up-skill computer security. Having some working knowledge of Python and being familiar with the basics of machine learning and cybersecurity fundamentals will help to get the most out of the book
Machine Learning and Cognitive Science Applications in Cyber Security
Author: Khan, Muhammad Salman
Publisher: IGI Global
ISBN: 1522581014
Category : Computers
Languages : en
Pages : 338
Book Description
In the past few years, with the evolution of advanced persistent threats and mutation techniques, sensitive and damaging information from a variety of sources have been exposed to possible corruption and hacking. Machine learning, artificial intelligence, predictive analytics, and similar disciplines of cognitive science applications have been found to have significant applications in the domain of cyber security. Machine Learning and Cognitive Science Applications in Cyber Security examines different applications of cognition that can be used to detect threats and analyze data to capture malware. Highlighting such topics as anomaly detection, intelligent platforms, and triangle scheme, this publication is designed for IT specialists, computer engineers, researchers, academicians, and industry professionals interested in the impact of machine learning in cyber security and the methodologies that can help improve the performance and reliability of machine learning applications.
Publisher: IGI Global
ISBN: 1522581014
Category : Computers
Languages : en
Pages : 338
Book Description
In the past few years, with the evolution of advanced persistent threats and mutation techniques, sensitive and damaging information from a variety of sources have been exposed to possible corruption and hacking. Machine learning, artificial intelligence, predictive analytics, and similar disciplines of cognitive science applications have been found to have significant applications in the domain of cyber security. Machine Learning and Cognitive Science Applications in Cyber Security examines different applications of cognition that can be used to detect threats and analyze data to capture malware. Highlighting such topics as anomaly detection, intelligent platforms, and triangle scheme, this publication is designed for IT specialists, computer engineers, researchers, academicians, and industry professionals interested in the impact of machine learning in cyber security and the methodologies that can help improve the performance and reliability of machine learning applications.
Research Methods for Cyber Security
Author: Thomas W. Edgar
Publisher: Syngress
ISBN: 0128129301
Category : Computers
Languages : en
Pages : 430
Book Description
Research Methods for Cyber Security teaches scientific methods for generating impactful knowledge, validating theories, and adding critical rigor to the cyber security field. This book shows how to develop a research plan, beginning by starting research with a question, then offers an introduction to the broad range of useful research methods for cyber security research: observational, mathematical, experimental, and applied. Each research method chapter concludes with recommended outlines and suggested templates for submission to peer reviewed venues. This book concludes with information on cross-cutting issues within cyber security research. Cyber security research contends with numerous unique issues, such as an extremely fast environment evolution, adversarial behavior, and the merging of natural and social science phenomena. Research Methods for Cyber Security addresses these concerns and much more by teaching readers not only the process of science in the context of cyber security research, but providing assistance in execution of research as well. - Presents research methods from a cyber security science perspective - Catalyzes the rigorous research necessary to propel the cyber security field forward - Provides a guided method selection for the type of research being conducted, presented in the context of real-world usage
Publisher: Syngress
ISBN: 0128129301
Category : Computers
Languages : en
Pages : 430
Book Description
Research Methods for Cyber Security teaches scientific methods for generating impactful knowledge, validating theories, and adding critical rigor to the cyber security field. This book shows how to develop a research plan, beginning by starting research with a question, then offers an introduction to the broad range of useful research methods for cyber security research: observational, mathematical, experimental, and applied. Each research method chapter concludes with recommended outlines and suggested templates for submission to peer reviewed venues. This book concludes with information on cross-cutting issues within cyber security research. Cyber security research contends with numerous unique issues, such as an extremely fast environment evolution, adversarial behavior, and the merging of natural and social science phenomena. Research Methods for Cyber Security addresses these concerns and much more by teaching readers not only the process of science in the context of cyber security research, but providing assistance in execution of research as well. - Presents research methods from a cyber security science perspective - Catalyzes the rigorous research necessary to propel the cyber security field forward - Provides a guided method selection for the type of research being conducted, presented in the context of real-world usage