Author: N. Carlo Lauro
Publisher: Springer
ISBN: 3319554778
Category : Social Science
Languages : en
Pages : 292
Book Description
This edited volume lays the groundwork for Social Data Science, addressing epistemological issues, methods, technologies, software and applications of data science in the social sciences. It presents data science techniques for the collection, analysis and use of both online and offline new (big) data in social research and related applications. Among others, the individual contributions cover topics like social media, learning analytics, clustering, statistical literacy, recurrence analysis and network analysis. Data science is a multidisciplinary approach based mainly on the methods of statistics and computer science, and its aim is to develop appropriate methodologies for forecasting and decision-making in response to an increasingly complex reality often characterized by large amounts of data (big data) of various types (numeric, ordinal and nominal variables, symbolic data, texts, images, data streams, multi-way data, social networks etc.) and from diverse sources. This book presents selected papers from the international conference on Data Science & Social Research, held in Naples, Italy in February 2016, and will appeal to researchers in the social sciences working in academia as well as in statistical institutes and offices.
Data Science and Social Research
Author: N. Carlo Lauro
Publisher: Springer
ISBN: 3319554778
Category : Social Science
Languages : en
Pages : 292
Book Description
This edited volume lays the groundwork for Social Data Science, addressing epistemological issues, methods, technologies, software and applications of data science in the social sciences. It presents data science techniques for the collection, analysis and use of both online and offline new (big) data in social research and related applications. Among others, the individual contributions cover topics like social media, learning analytics, clustering, statistical literacy, recurrence analysis and network analysis. Data science is a multidisciplinary approach based mainly on the methods of statistics and computer science, and its aim is to develop appropriate methodologies for forecasting and decision-making in response to an increasingly complex reality often characterized by large amounts of data (big data) of various types (numeric, ordinal and nominal variables, symbolic data, texts, images, data streams, multi-way data, social networks etc.) and from diverse sources. This book presents selected papers from the international conference on Data Science & Social Research, held in Naples, Italy in February 2016, and will appeal to researchers in the social sciences working in academia as well as in statistical institutes and offices.
Publisher: Springer
ISBN: 3319554778
Category : Social Science
Languages : en
Pages : 292
Book Description
This edited volume lays the groundwork for Social Data Science, addressing epistemological issues, methods, technologies, software and applications of data science in the social sciences. It presents data science techniques for the collection, analysis and use of both online and offline new (big) data in social research and related applications. Among others, the individual contributions cover topics like social media, learning analytics, clustering, statistical literacy, recurrence analysis and network analysis. Data science is a multidisciplinary approach based mainly on the methods of statistics and computer science, and its aim is to develop appropriate methodologies for forecasting and decision-making in response to an increasingly complex reality often characterized by large amounts of data (big data) of various types (numeric, ordinal and nominal variables, symbolic data, texts, images, data streams, multi-way data, social networks etc.) and from diverse sources. This book presents selected papers from the international conference on Data Science & Social Research, held in Naples, Italy in February 2016, and will appeal to researchers in the social sciences working in academia as well as in statistical institutes and offices.
Introduction to Data Science for Social and Policy Research
Author: Jose Manuel Magallanes Reyes
Publisher: Cambridge University Press
ISBN: 1107117410
Category : Computers
Languages : en
Pages : 317
Book Description
This comprehensive guide provides a step-by-step approach to data collection, cleaning, formatting, and storage, using Python and R.
Publisher: Cambridge University Press
ISBN: 1107117410
Category : Computers
Languages : en
Pages : 317
Book Description
This comprehensive guide provides a step-by-step approach to data collection, cleaning, formatting, and storage, using Python and R.
Data Science and Social Research II
Author: Paolo Mariani
Publisher: Springer Nature
ISBN: 3030512223
Category : Social Science
Languages : en
Pages : 391
Book Description
The peer-reviewed contributions gathered in this book address methods, software and applications of statistics and data science in the social sciences. The data revolution in social science research has not only produced new business models, but has also provided policymakers with better decision-making support tools. In this volume, statisticians, computer scientists and experts on social research discuss the opportunities and challenges of the social data revolution in order to pave the way for addressing new research problems. The respective contributions focus on complex social systems and current methodological advances in extracting social knowledge from large data sets, as well as modern social research on human behavior and society using large data sets. Moreover, they analyze integrated systems designed to take advantage of new social data sources, and discuss quality-related issues. The papers were originally presented at the 2nd International Conference on Data Science and Social Research, held in Milan, Italy, on February 4-5, 2019.
Publisher: Springer Nature
ISBN: 3030512223
Category : Social Science
Languages : en
Pages : 391
Book Description
The peer-reviewed contributions gathered in this book address methods, software and applications of statistics and data science in the social sciences. The data revolution in social science research has not only produced new business models, but has also provided policymakers with better decision-making support tools. In this volume, statisticians, computer scientists and experts on social research discuss the opportunities and challenges of the social data revolution in order to pave the way for addressing new research problems. The respective contributions focus on complex social systems and current methodological advances in extracting social knowledge from large data sets, as well as modern social research on human behavior and society using large data sets. Moreover, they analyze integrated systems designed to take advantage of new social data sources, and discuss quality-related issues. The papers were originally presented at the 2nd International Conference on Data Science and Social Research, held in Milan, Italy, on February 4-5, 2019.
Big Data and Social Science
Author: Ian Foster
Publisher: CRC Press
ISBN: 100020863X
Category : Mathematics
Languages : en
Pages : 341
Book Description
Big Data and Social Science: Data Science Methods and Tools for Research and Practice, Second Edition shows how to apply data science to real-world problems, covering all stages of a data-intensive social science or policy project. Prominent leaders in the social sciences, statistics, and computer science as well as the field of data science provide a unique perspective on how to apply modern social science research principles and current analytical and computational tools. The text teaches you how to identify and collect appropriate data, apply data science methods and tools to the data, and recognize and respond to data errors, biases, and limitations. Features: Takes an accessible, hands-on approach to handling new types of data in the social sciences Presents the key data science tools in a non-intimidating way to both social and data scientists while keeping the focus on research questions and purposes Illustrates social science and data science principles through real-world problems Links computer science concepts to practical social science research Promotes good scientific practice Provides freely available workbooks with data, code, and practical programming exercises, through Binder and GitHub New to the Second Edition: Increased use of examples from different areas of social sciences New chapter on dealing with Bias and Fairness in Machine Learning models Expanded chapters focusing on Machine Learning and Text Analysis Revamped hands-on Jupyter notebooks to reinforce concepts covered in each chapter This classroom-tested book fills a major gap in graduate- and professional-level data science and social science education. It can be used to train a new generation of social data scientists to tackle real-world problems and improve the skills and competencies of applied social scientists and public policy practitioners. It empowers you to use the massive and rapidly growing amounts of available data to interpret economic and social activities in a scientific and rigorous manner.
Publisher: CRC Press
ISBN: 100020863X
Category : Mathematics
Languages : en
Pages : 341
Book Description
Big Data and Social Science: Data Science Methods and Tools for Research and Practice, Second Edition shows how to apply data science to real-world problems, covering all stages of a data-intensive social science or policy project. Prominent leaders in the social sciences, statistics, and computer science as well as the field of data science provide a unique perspective on how to apply modern social science research principles and current analytical and computational tools. The text teaches you how to identify and collect appropriate data, apply data science methods and tools to the data, and recognize and respond to data errors, biases, and limitations. Features: Takes an accessible, hands-on approach to handling new types of data in the social sciences Presents the key data science tools in a non-intimidating way to both social and data scientists while keeping the focus on research questions and purposes Illustrates social science and data science principles through real-world problems Links computer science concepts to practical social science research Promotes good scientific practice Provides freely available workbooks with data, code, and practical programming exercises, through Binder and GitHub New to the Second Edition: Increased use of examples from different areas of social sciences New chapter on dealing with Bias and Fairness in Machine Learning models Expanded chapters focusing on Machine Learning and Text Analysis Revamped hands-on Jupyter notebooks to reinforce concepts covered in each chapter This classroom-tested book fills a major gap in graduate- and professional-level data science and social science education. It can be used to train a new generation of social data scientists to tackle real-world problems and improve the skills and competencies of applied social scientists and public policy practitioners. It empowers you to use the massive and rapidly growing amounts of available data to interpret economic and social activities in a scientific and rigorous manner.
Data Analysis for Social Science
Author: Elena Llaudet
Publisher: Princeton University Press
ISBN: 0691199434
Category : Computers
Languages : en
Pages : 256
Book Description
"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--
Publisher: Princeton University Press
ISBN: 0691199434
Category : Computers
Languages : en
Pages : 256
Book Description
"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--
Social Data Science Xennials
Author: Gian Marco Campagnolo
Publisher: Springer Nature
ISBN: 303060358X
Category : Social Science
Languages : en
Pages : 113
Book Description
This book explores the tension between analogue and digital as part of an evolving research programme and focuses on the sequencing of methods within it. The book will be an invaluable reference for scholars who routinely engage in critical sociological analysis of the digital workplace and find it easier to treat the digital as an object of study. It describes how the transformations taking place in the 10-year arc of a career spent doing fieldwork in the IT sector led the author to progressively embrace new forms of data and methods. In a time where sociological imagination takes the shape of whatever new phenomenon can be studied by transactional data and machine learning methods, it is a reminder that longstanding engagement with a particular field of practice is the basis of empirical social science expertise. ‘This short book by Gian Marco Campagnolo is remarkably wide-ranging. It draws on theoretical perspectives as varied as Harold Garfinkel’s ethnomethodology and Andrew Abbott’s ‘linked ecologies’ to discuss topics as diverse as the adoption of packaged enterprise software in the public sector in Italy and the careers of often influential industry analysts. Campagnolo’s methods are primarily qualitative and ethnographic, but he shows a proper appreciation for quantitative methods such as text mining and sequence analysis. The book ends with a discussion of the famously difficult issue of achieving ‘explainability’ in machine learning. Campagnolo tantalisingly suggests the usefulness here of how ethnomethodologists view ‘accountability’: as a practical accomplishment that is hampered, rather than fostered, by efforts to give full explanations.’ —Donald MacKenzie, Professor of Sociology, Edinburgh University, Scotland ‘The author adopts a ‘processual’ perspective on social data science as means of exploring and reflecting on the emergence of an academic career within this new domain of interdisciplinary inquiry. This is certainly a novel and interesting approach given the fact that ‘data science’ is work in progress and is characterized by a number of competing occupational groups that are struggling to define this emerging field.’ —William Housley, Professor, University of Cardiff, UK ‘Having myself written about the relationships between ethnography and computer science, I see this book as a timely contribution in that it extends the existing debate to data science. Data science is an emerging discipline that is gaining central stage in industry and in the public discourse. The aim of this book to indicate the importance of interdisciplinarity in this field is commendable.’ —Giolo Fele, Professor, University of Trento, Italy 'This book provides two entwined accounts: a reflective personal journey across different projects and methods and a grounded, genealogically sound analysis of the approaches and contributions of social science to understanding the digital society. These dual accounts are adroitly communicated. Their bold combination yields a unique and invaluable contribution to fundamental discussions in the social sciences, as well as an exemplar for how to combine ethnographic and data-driven analysis in a theoretically and epistemologically informed manner. With this book, Campagnolo brings us close to the methods and opens up an inspiring and challenging agenda for combining old and new forms of inquiry into sociological problems.' —Anne Beaulieu, Director Data Research Centre, University of Groningen, Netherlands
Publisher: Springer Nature
ISBN: 303060358X
Category : Social Science
Languages : en
Pages : 113
Book Description
This book explores the tension between analogue and digital as part of an evolving research programme and focuses on the sequencing of methods within it. The book will be an invaluable reference for scholars who routinely engage in critical sociological analysis of the digital workplace and find it easier to treat the digital as an object of study. It describes how the transformations taking place in the 10-year arc of a career spent doing fieldwork in the IT sector led the author to progressively embrace new forms of data and methods. In a time where sociological imagination takes the shape of whatever new phenomenon can be studied by transactional data and machine learning methods, it is a reminder that longstanding engagement with a particular field of practice is the basis of empirical social science expertise. ‘This short book by Gian Marco Campagnolo is remarkably wide-ranging. It draws on theoretical perspectives as varied as Harold Garfinkel’s ethnomethodology and Andrew Abbott’s ‘linked ecologies’ to discuss topics as diverse as the adoption of packaged enterprise software in the public sector in Italy and the careers of often influential industry analysts. Campagnolo’s methods are primarily qualitative and ethnographic, but he shows a proper appreciation for quantitative methods such as text mining and sequence analysis. The book ends with a discussion of the famously difficult issue of achieving ‘explainability’ in machine learning. Campagnolo tantalisingly suggests the usefulness here of how ethnomethodologists view ‘accountability’: as a practical accomplishment that is hampered, rather than fostered, by efforts to give full explanations.’ —Donald MacKenzie, Professor of Sociology, Edinburgh University, Scotland ‘The author adopts a ‘processual’ perspective on social data science as means of exploring and reflecting on the emergence of an academic career within this new domain of interdisciplinary inquiry. This is certainly a novel and interesting approach given the fact that ‘data science’ is work in progress and is characterized by a number of competing occupational groups that are struggling to define this emerging field.’ —William Housley, Professor, University of Cardiff, UK ‘Having myself written about the relationships between ethnography and computer science, I see this book as a timely contribution in that it extends the existing debate to data science. Data science is an emerging discipline that is gaining central stage in industry and in the public discourse. The aim of this book to indicate the importance of interdisciplinarity in this field is commendable.’ —Giolo Fele, Professor, University of Trento, Italy 'This book provides two entwined accounts: a reflective personal journey across different projects and methods and a grounded, genealogically sound analysis of the approaches and contributions of social science to understanding the digital society. These dual accounts are adroitly communicated. Their bold combination yields a unique and invaluable contribution to fundamental discussions in the social sciences, as well as an exemplar for how to combine ethnographic and data-driven analysis in a theoretically and epistemologically informed manner. With this book, Campagnolo brings us close to the methods and opens up an inspiring and challenging agenda for combining old and new forms of inquiry into sociological problems.' —Anne Beaulieu, Director Data Research Centre, University of Groningen, Netherlands
Introduction to Data Science for Social and Policy Research
Author: Jose Manuel Magallanes Reyes
Publisher: Cambridge University Press
ISBN: 110836411X
Category : Social Science
Languages : en
Pages : 317
Book Description
Real-world data sets are messy and complicated. Written for students in social science and public management, this authoritative but approachable guide describes all the tools needed to collect data and prepare it for analysis. Offering detailed, step-by-step instructions, it covers collection of many different types of data including web files, APIs, and maps; data cleaning; data formatting; the integration of different sources into a comprehensive data set; and storage using third-party tools to facilitate access and shareability, from Google Docs to GitHub. Assuming no prior knowledge of R and Python, the author introduces programming concepts gradually, using real data sets that provide the reader with practical, functional experience.
Publisher: Cambridge University Press
ISBN: 110836411X
Category : Social Science
Languages : en
Pages : 317
Book Description
Real-world data sets are messy and complicated. Written for students in social science and public management, this authoritative but approachable guide describes all the tools needed to collect data and prepare it for analysis. Offering detailed, step-by-step instructions, it covers collection of many different types of data including web files, APIs, and maps; data cleaning; data formatting; the integration of different sources into a comprehensive data set; and storage using third-party tools to facilitate access and shareability, from Google Docs to GitHub. Assuming no prior knowledge of R and Python, the author introduces programming concepts gradually, using real data sets that provide the reader with practical, functional experience.
Data Science Thinking
Author: Longbing Cao
Publisher: Springer
ISBN: 3319950924
Category : Computers
Languages : en
Pages : 404
Book Description
This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education? How does one remain competitive in the data science field? What is responsible for shaping the mindset and skillset of data scientists? Data Science Thinking paints a comprehensive picture of data science as a new scientific paradigm from the scientific evolution perspective, as data science thinking from the scientific-thinking perspective, as a trans-disciplinary science from the disciplinary perspective, and as a new profession and economy from the business perspective.
Publisher: Springer
ISBN: 3319950924
Category : Computers
Languages : en
Pages : 404
Book Description
This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education? How does one remain competitive in the data science field? What is responsible for shaping the mindset and skillset of data scientists? Data Science Thinking paints a comprehensive picture of data science as a new scientific paradigm from the scientific evolution perspective, as data science thinking from the scientific-thinking perspective, as a trans-disciplinary science from the disciplinary perspective, and as a new profession and economy from the business perspective.
Data Science and Big Data Computing
Author: Zaigham Mahmood
Publisher: Springer
ISBN: 3319318616
Category : Business & Economics
Languages : en
Pages : 332
Book Description
This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by authoritative researchers and practitioners from around the world, discussing research developments and emerging trends, presenting case studies on helpful frameworks and innovative methodologies, and suggesting best practices for efficient and effective data analytics. Features: reviews a framework for fast data applications, a technique for complex event processing, and agglomerative approaches for the partitioning of networks; introduces a unified approach to data modeling and management, and a distributed computing perspective on interfacing physical and cyber worlds; presents techniques for machine learning for big data, and identifying duplicate records in data repositories; examines enabling technologies and tools for data mining; proposes frameworks for data extraction, and adaptive decision making and social media analysis.
Publisher: Springer
ISBN: 3319318616
Category : Business & Economics
Languages : en
Pages : 332
Book Description
This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by authoritative researchers and practitioners from around the world, discussing research developments and emerging trends, presenting case studies on helpful frameworks and innovative methodologies, and suggesting best practices for efficient and effective data analytics. Features: reviews a framework for fast data applications, a technique for complex event processing, and agglomerative approaches for the partitioning of networks; introduces a unified approach to data modeling and management, and a distributed computing perspective on interfacing physical and cyber worlds; presents techniques for machine learning for big data, and identifying duplicate records in data repositories; examines enabling technologies and tools for data mining; proposes frameworks for data extraction, and adaptive decision making and social media analysis.
Methods of Social Research
Author: Kenneth D. Bailey
Publisher: Simon and Schuster
ISBN: 0029012791
Category : Social sciences
Languages : en
Pages : 616
Book Description
An introduction for undergraduates to every stage of sociological research, showing how to deal effectively with typical problems they might encounter. The book is fully updated to include examples from the LA riots and the 1992 presidential elections.
Publisher: Simon and Schuster
ISBN: 0029012791
Category : Social sciences
Languages : en
Pages : 616
Book Description
An introduction for undergraduates to every stage of sociological research, showing how to deal effectively with typical problems they might encounter. The book is fully updated to include examples from the LA riots and the 1992 presidential elections.