Data Science and Interdisciplinary Research: Recent Trends and Applications

Data Science and Interdisciplinary Research: Recent Trends and Applications PDF Author: Brojo Kishore Mishra
Publisher: Bentham Science Publishers
ISBN: 9815079018
Category : Computers
Languages : en
Pages : 260

Get Book Here

Book Description
Data Science and Interdisciplinary Research: Recent Trends and Applications is a compelling edited volume that offers a comprehensive exploration of the latest advancements in data science and interdisciplinary research. Through a collection of 10 insightful chapters, this book showcases diverse models of machine learning, communications, signal processing, and data analysis, illustrating their relevance in various fields. Key Themes: Advanced Rainfall Prediction: Presents a machine learning model designed to tackle the challenging task of predicting rainfall across multiple countries, showcasing its potential to enhance weather forecasting. Efficient Cloud Data Clustering: Explains a novel computational approach for clustering large-scale cloud data, addressing the scalability of cloud computing and data analysis. Secure In-Vehicle Communication: Explores the critical topic of secure communication in in-vehicle networks, emphasizing message authentication and data integrity. Smart Irrigation 4.0: Details a decision model designed for smart irrigation, integrating agricultural sensor data reliability analysis to optimize water usage in precision agriculture. Smart Electricity Monitoring: Highlights machine learning-based smart electricity monitoring and fault detection systems, contributing to the development of smart cities. Enhanced Learning Environments: Investigates the effectiveness of mobile learning in higher education, shedding light on the role of technology in shaping modern learning environments. Coastal Socio-Economy Study: Presents a case study on the socio-economic conditions of coastal fishing communities, offering insights into the livelihoods and challenges they face. Signal Noise Removal: Shows filtering techniques for removing noise from ECG signals, enhancing the accuracy of medical data analysis and diagnosis. Deep Learning in Biomedical Research: Explores deep learning techniques for biomedical research, particularly in the realm of gene identification using Next Generation Sequencing (NGS) data. Medical Diagnosis through Machine Learning: Concludes with a chapter on breast cancer detection using machine learning concepts, demonstrating the potential of AI-driven diagnostics.

Data Science and Interdisciplinary Research: Recent Trends and Applications

Data Science and Interdisciplinary Research: Recent Trends and Applications PDF Author: Brojo Kishore Mishra
Publisher: Bentham Science Publishers
ISBN: 9815079018
Category : Computers
Languages : en
Pages : 260

Get Book Here

Book Description
Data Science and Interdisciplinary Research: Recent Trends and Applications is a compelling edited volume that offers a comprehensive exploration of the latest advancements in data science and interdisciplinary research. Through a collection of 10 insightful chapters, this book showcases diverse models of machine learning, communications, signal processing, and data analysis, illustrating their relevance in various fields. Key Themes: Advanced Rainfall Prediction: Presents a machine learning model designed to tackle the challenging task of predicting rainfall across multiple countries, showcasing its potential to enhance weather forecasting. Efficient Cloud Data Clustering: Explains a novel computational approach for clustering large-scale cloud data, addressing the scalability of cloud computing and data analysis. Secure In-Vehicle Communication: Explores the critical topic of secure communication in in-vehicle networks, emphasizing message authentication and data integrity. Smart Irrigation 4.0: Details a decision model designed for smart irrigation, integrating agricultural sensor data reliability analysis to optimize water usage in precision agriculture. Smart Electricity Monitoring: Highlights machine learning-based smart electricity monitoring and fault detection systems, contributing to the development of smart cities. Enhanced Learning Environments: Investigates the effectiveness of mobile learning in higher education, shedding light on the role of technology in shaping modern learning environments. Coastal Socio-Economy Study: Presents a case study on the socio-economic conditions of coastal fishing communities, offering insights into the livelihoods and challenges they face. Signal Noise Removal: Shows filtering techniques for removing noise from ECG signals, enhancing the accuracy of medical data analysis and diagnosis. Deep Learning in Biomedical Research: Explores deep learning techniques for biomedical research, particularly in the realm of gene identification using Next Generation Sequencing (NGS) data. Medical Diagnosis through Machine Learning: Concludes with a chapter on breast cancer detection using machine learning concepts, demonstrating the potential of AI-driven diagnostics.

Information Technology Trends for a Global and Interdisciplinary Research Community

Information Technology Trends for a Global and Interdisciplinary Research Community PDF Author: Francisco José García Peñalvo
Publisher: Information Science Publishing
ISBN: 9781799857310
Category :
Languages : en
Pages :

Get Book Here

Book Description


Exploring Advances in Interdisciplinary Data Mining and Analytics: New Trends

Exploring Advances in Interdisciplinary Data Mining and Analytics: New Trends PDF Author: Taniar, David
Publisher: IGI Global
ISBN: 1613504756
Category : Computers
Languages : en
Pages : 353

Get Book Here

Book Description
"This book is an updated look at the state of technology in the field of data mining and analytics offering the latest technological, analytical, ethical, and commercial perspectives on topics in data mining"--Provided by publisher.

Proceedings of the 2022 3rd International Conference on Artificial Intelligence and Education (IC-ICAIE 2022)

Proceedings of the 2022 3rd International Conference on Artificial Intelligence and Education (IC-ICAIE 2022) PDF Author: Bob Fox
Publisher: Springer Nature
ISBN: 946463040X
Category : Computers
Languages : en
Pages : 1656

Get Book Here

Book Description
This is an open access book. The 2022 3rd International Conference on Artificial Intelligence and Education(ICAIE 2022) will be held in Chengdu, China during June 24-26, 2022. The meeting focused on the new trends in the development of "artificial intelligence" and "education" under the new situation, and jointly discussed how to empower and promote the high-quality development of "artificial intelligence" and "education". An ideal platform to share views and experiences with industry experts. The conference invites experts and scholars in the field to conduct wonderful exchanges based on their own research results based on the development of the times. The themes are around artificial intelligence technology and applications; intelligent and knowledge-based systems; information-based education; intelligent learning; advanced information theory and neural network technology ; software computing and algorithms; intelligent algorithms and computing and many other topics.

Proceedings of the International Conference on Applications of Machine Intelligence and Data Analytics (ICAMIDA 2022)

Proceedings of the International Conference on Applications of Machine Intelligence and Data Analytics (ICAMIDA 2022) PDF Author: Sharvari Tamane
Publisher: Springer Nature
ISBN: 9464631368
Category : Computers
Languages : en
Pages : 1027

Get Book Here

Book Description
This is an open access book. As on date, huge volumes of data are being generated through sensors, satellites, and simulators. Modern research on data analytics and its applications reveal that several algorithms are being designed and developed to process these datasets, either through the use of sequential and parallel processes. In the current scenario of Industry 4.0, data analytics, artificial intelligence and machine learning are being used to support decisions in space and time. Further, the availability of Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs) have enabled to processing of these datasets. Some of the applications of Artificial Intelligence, Machine Learning and Data Analytics are in the domains of Agriculture, Climate Change, Disaster Prediction, Automation in Manufacturing, Intelligent Transportation Systems, Health Care, Retail, Stock Market, Fashion Design, etc. The international conference on Applications of Machine Intelligence and Data Analytics aims to bring together faculty members, researchers, scientists, and industry people on a common platform to exchange ideas, algorithms, knowledge based on processing hardware and their respective application programming interfaces (APIs).

Encyclopedia of Data Science and Machine Learning

Encyclopedia of Data Science and Machine Learning PDF Author: Wang, John
Publisher: IGI Global
ISBN: 1799892212
Category : Computers
Languages : en
Pages : 3296

Get Book Here

Book Description
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.

Data Science

Data Science PDF Author: John D. Kelleher
Publisher: MIT Press
ISBN: 0262535432
Category : Computers
Languages : en
Pages : 282

Get Book Here

Book Description
A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

Artificial Intelligence (AI)

Artificial Intelligence (AI) PDF Author: S. Kanimozhi Suguna
Publisher: CRC Press
ISBN: 1000375528
Category : Technology & Engineering
Languages : en
Pages : 331

Get Book Here

Book Description
This book aims to bring together leading academic scientists, researchers, and research scholars to exchange and share their experiences and research results on all aspects of Artificial Intelligence. The book provides a premier interdisciplinary platform to present practical challenges and adopted solutions. The book addresses the complete functional framework workflow in Artificial Intelligence technology. It explores the basic and high-level concepts and can serve as a manual for the industry for beginners and the more advanced. It covers intelligent and automated systems and its implications to the real-world, and offers data acquisition and case studies related to data-intensive technologies in AI-based applications. The book will be of interest to researchers, professionals, scientists, professors, students of computer science engineering, electronics and communications, as well as information technology.

Advances in Data Science and Computing Technology

Advances in Data Science and Computing Technology PDF Author: Suman Ghosal
Publisher: CRC Press
ISBN: 100056486X
Category : Computers
Languages : en
Pages : 449

Get Book Here

Book Description
This volume helps to address the genuine 21st century need for advances in data science and computing technology. It provides an abundance of new research and studies on progressive and innovative technologies, including artificial intelligence, communication systems, cyber security applications, data analytics, Internet of Things (IoT), machine learning, power systems, VLSI, embedded systems, and much more. The book presents a variety of interesting and important aspects of data science and computing technologies and methodologies in a wide range of applications, including deep learning, DNA cryptography, classy fuzzy MPPT controller, driving assistance, and safety systems. Novel algorithms and their applications for solving cutting-edge computational and data science problems are included also for an interdisciplinary research perspective. The book addresses recent applications of deep learning and ANN paradigms, the role and impact of big data in the e-commerce and retail sectors, algorithms for load balancing in cloud computing, advances in embedded system based applications, optimization techniques using a MATLAB platform, and techniques for improving information and network security. Advances in Data Science and Computing Technology: Methodology and Applications provides a wealth of valuable information and food for thought on many important issues for data scientists and researchers, industry professionals, and faculty and students in the data and computing sciences.

Data Science and Interdisciplinary Research

Data Science and Interdisciplinary Research PDF Author: Brojo Kishore Mishra
Publisher: Bentham Science Publishers
ISBN: 9789815079029
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Data Science and Interdisciplinary Research: Recent Trends and Applications is a compelling edited volume that offers a comprehensive exploration of the latest advancements in data science and interdisciplinary research. Through a collection of 10 insightful chapters, this book showcases diverse models of machine learning, communications, signal processing, and data analysis, illustrating their relevance in various fields. Key Themes: -Advanced Rainfall Prediction: Presents a machine learning model designed to tackle the challenging task of predicting rainfall across multiple countries, showcasing its potential to enhance weather forecasting. -Efficient Cloud Data Clustering: Explains a novel computational approach for clustering large-scale cloud data, addressing the scalability of cloud computing and data analysis. -Secure In-Vehicle Communication: Explores the critical topic of secure communication in in-vehicle networks, emphasizing message authentication and data integrity. -Smart Irrigation 4.0: Details a decision model designed for smart irrigation, integrating agricultural sensor data reliability analysis to optimize water usage in precision agriculture. -Smart Electricity Monitoring: Highlights machine learning-based smart electricity monitoring and fault detection systems, contributing to the development of smart cities. -Enhanced Learning Environments: Investigates the effectiveness of mobile learning in higher education, shedding light on the role of technology in shaping modern learning environments. -Coastal Socio-Economy Study: Presents a case study on the socio-economic conditions of coastal fishing communities, offering insights into the livelihoods and challenges they face. -Signal Noise Removal: Shows filtering techniques for removing noise from ECG signals, enhancing the accuracy of medical data analysis and diagnosis. -Deep Learning in Biomedical Research: Explores deep learning techniques for biomedical research, particularly in the realm of gene identification using Next Generation Sequencing (NGS) data. -Medical Diagnosis through Machine Learning: Concludes with a chapter on breast cancer detection using machine learning concepts, demonstrating the potential of AI-driven diagnostics.