Data Science and Complex Networks

Data Science and Complex Networks PDF Author: Guido Caldarelli
Publisher: Oxford University Press
ISBN: 0191024023
Category : Science
Languages : en
Pages : 139

Get Book Here

Book Description
This book provides a comprehensive yet short description of the basic concepts of Complex Network theory. In contrast to other books the authors present these concepts through real case studies. The application topics span from Foodwebs, to the Internet, the World Wide Web and the Social Networks, passing through the International Trade Web and Financial time series. The final part is devoted to definition and implementation of the most important network models. The text provides information on the structure of the data and on the quality of available datasets. Furthermore it provides a series of codes to allow immediate implementation of what is theoretically described in the book. Readers already used to the concepts introduced in this book can learn the art of coding in Python by using the online material. To this purpose the authors have set up a dedicated web site where readers can download and test the codes. The whole project is aimed as a learning tool for scientists and practitioners, enabling them to begin working instantly in the field of Complex Networks.

Data Science and Complex Networks

Data Science and Complex Networks PDF Author: Guido Caldarelli
Publisher: Oxford University Press
ISBN: 0191024023
Category : Science
Languages : en
Pages : 139

Get Book Here

Book Description
This book provides a comprehensive yet short description of the basic concepts of Complex Network theory. In contrast to other books the authors present these concepts through real case studies. The application topics span from Foodwebs, to the Internet, the World Wide Web and the Social Networks, passing through the International Trade Web and Financial time series. The final part is devoted to definition and implementation of the most important network models. The text provides information on the structure of the data and on the quality of available datasets. Furthermore it provides a series of codes to allow immediate implementation of what is theoretically described in the book. Readers already used to the concepts introduced in this book can learn the art of coding in Python by using the online material. To this purpose the authors have set up a dedicated web site where readers can download and test the codes. The whole project is aimed as a learning tool for scientists and practitioners, enabling them to begin working instantly in the field of Complex Networks.

Network Models for Data Science

Network Models for Data Science PDF Author: Alan Julian Izenman
Publisher: Cambridge University Press
ISBN: 1108835767
Category : Mathematics
Languages : en
Pages : 501

Get Book Here

Book Description
This is the first book to describe modern methods for analyzing complex networks arising from a wide range of disciplines.

Data Science and Complex Networks

Data Science and Complex Networks PDF Author: Guido Caldarelli
Publisher: Oxford University Press
ISBN: 0199639604
Category : Business & Economics
Languages : en
Pages : 139

Get Book Here

Book Description
This book guides the reader in the analysis of big-data by providing theoretical and practical instruments to tame the complexity of such systems. Together with support provided by the companion website, it constitutes a simple and useful handbook for data analysts.

Complex Network Analysis in Python

Complex Network Analysis in Python PDF Author: Dmitry Zinoviev
Publisher: Pragmatic Bookshelf
ISBN: 1680505408
Category : Computers
Languages : en
Pages : 330

Get Book Here

Book Description
Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially. Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience. Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics. Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer. What You Need: You will need a Python 3.x installation with the following additional modules: Pandas (>=0.18), NumPy (>=1.10), matplotlib (>=1.5), networkx (>=1.11), python-louvain (>=0.5), NetworKit (>=3.6), and generalizesimilarity. We recommend using the Anaconda distribution that comes with all these modules, except for python-louvain, NetworKit, and generalizedsimilarity, and works on all major modern operating systems.

Machine Learning in Complex Networks

Machine Learning in Complex Networks PDF Author: Thiago Christiano Silva
Publisher: Springer
ISBN: 3319172905
Category : Computers
Languages : en
Pages : 345

Get Book Here

Book Description
This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in this book, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas.

Advances in Data Science

Advances in Data Science PDF Author: Edwin Diday
Publisher: John Wiley & Sons
ISBN: 1119694965
Category : Business & Economics
Languages : en
Pages : 232

Get Book Here

Book Description
Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences.

Mining Complex Networks

Mining Complex Networks PDF Author: Bogumil Kaminski
Publisher: CRC Press
ISBN: 9781032112053
Category : Business & Economics
Languages : en
Pages : 0

Get Book Here

Book Description
This book concentrates on mining networks, a subfield within data science. Mining complex networks to understand the principles governing the organization and the behaviour of such networks is crucial for a broad range of fields of study.

Complex Networks

Complex Networks PDF Author: Vito Latora
Publisher: Cambridge University Press
ISBN: 1107103185
Category : Computers
Languages : en
Pages : 585

Get Book Here

Book Description
A comprehensive introduction to the theory and applications of complex network science, complete with real-world data sets and software tools.

Dynamical Processes on Complex Networks

Dynamical Processes on Complex Networks PDF Author: Alain Barrat
Publisher: Cambridge University Press
ISBN: 9781107626256
Category : Science
Languages : en
Pages : 361

Get Book Here

Book Description
The availability of large data sets have allowed researchers to uncover complex properties such as large scale fluctuations and heterogeneities in many networks which have lead to the breakdown of standard theoretical frameworks and models. Until recently these systems were considered as haphazard sets of points and connections. Recent advances have generated a vigorous research effort in understanding the effect of complex connectivity patterns on dynamical phenomena. For example, a vast number of everyday systems, from the brain to ecosystems, power grids and the Internet, can be represented as large complex networks. This new and recent account presents a comprehensive explanation of these effects.

Network Science

Network Science PDF Author: Albert-László Barabási
Publisher: Cambridge University Press
ISBN: 1107076269
Category : Computers
Languages : en
Pages : 477

Get Book Here

Book Description
Illustrated throughout in full colour, this pioneering text is the only book you need for an introduction to network science.