Author: Dr. Argenis Leon
Publisher: Packt Publishing Ltd
ISBN: 1801077754
Category : Computers
Languages : en
Pages : 301
Book Description
Written by the core Optimus team, this comprehensive guide will help you to understand how Optimus improves the whole data processing landscape Key FeaturesLoad, merge, and save small and big data efficiently with OptimusLearn Optimus functions for data analytics, feature engineering, machine learning, cross-validation, and NLPDiscover how Optimus improves other data frame technologies and helps you speed up your data processing tasksBook Description Optimus is a Python library that works as a unified API for data cleaning, processing, and merging data. It can be used for handling small and big data on your local laptop or on remote clusters using CPUs or GPUs. The book begins by covering the internals of Optimus and how it works in tandem with the existing technologies to serve your data processing needs. You'll then learn how to use Optimus for loading and saving data from text data formats such as CSV and JSON files, exploring binary files such as Excel, and for columnar data processing with Parquet, Avro, and OCR. Next, you'll get to grips with the profiler and its data types - a unique feature of Optimus Dataframe that assists with data quality. You'll see how to use the plots available in Optimus such as histogram, frequency charts, and scatter and box plots, and understand how Optimus lets you connect to libraries such as Plotly and Altair. You'll also delve into advanced applications such as feature engineering, machine learning, cross-validation, and natural language processing functions and explore the advancements in Optimus. Finally, you'll learn how to create data cleaning and transformation functions and add a hypothetical new data processing engine with Optimus. By the end of this book, you'll be able to improve your data science workflow with Optimus easily. What you will learnUse over 100 data processing functions over columns and other string-like valuesReshape and pivot data to get the output in the required formatFind out how to plot histograms, frequency charts, scatter plots, box plots, and moreConnect Optimus with popular Python visualization libraries such as Plotly and AltairApply string clustering techniques to normalize stringsDiscover functions to explore, fix, and remove poor quality dataUse advanced techniques to remove outliers from your dataAdd engines and custom functions to clean, process, and merge dataWho this book is for This book is for Python developers who want to explore, transform, and prepare big data for machine learning, analytics, and reporting using Optimus, a unified API to work with Pandas, Dask, cuDF, Dask-cuDF, Vaex, and Spark. Although not necessary, beginner-level knowledge of Python will be helpful. Basic knowledge of the CLI is required to install Optimus and its requirements. For using GPU technologies, you'll need an NVIDIA graphics card compatible with NVIDIA's RAPIDS library, which is compatible with Windows 10 and Linux.
Data Processing with Optimus
NASA SP-7500
Author: United States. National Aeronautics and Space Administration
Publisher:
ISBN:
Category :
Languages : en
Pages : 140
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 140
Book Description
Software Architecture for Big Data and the Cloud
Author: Ivan Mistrik
Publisher: Morgan Kaufmann
ISBN: 0128093382
Category : Computers
Languages : en
Pages : 472
Book Description
Software Architecture for Big Data and the Cloud is designed to be a single resource that brings together research on how software architectures can solve the challenges imposed by building big data software systems. The challenges of big data on the software architecture can relate to scale, security, integrity, performance, concurrency, parallelism, and dependability, amongst others. Big data handling requires rethinking architectural solutions to meet functional and non-functional requirements related to volume, variety and velocity. The book's editors have varied and complementary backgrounds in requirements and architecture, specifically in software architectures for cloud and big data, as well as expertise in software engineering for cloud and big data. This book brings together work across different disciplines in software engineering, including work expanded from conference tracks and workshops led by the editors. - Discusses systematic and disciplined approaches to building software architectures for cloud and big data with state-of-the-art methods and techniques - Presents case studies involving enterprise, business, and government service deployment of big data applications - Shares guidance on theory, frameworks, methodologies, and architecture for cloud and big data
Publisher: Morgan Kaufmann
ISBN: 0128093382
Category : Computers
Languages : en
Pages : 472
Book Description
Software Architecture for Big Data and the Cloud is designed to be a single resource that brings together research on how software architectures can solve the challenges imposed by building big data software systems. The challenges of big data on the software architecture can relate to scale, security, integrity, performance, concurrency, parallelism, and dependability, amongst others. Big data handling requires rethinking architectural solutions to meet functional and non-functional requirements related to volume, variety and velocity. The book's editors have varied and complementary backgrounds in requirements and architecture, specifically in software architectures for cloud and big data, as well as expertise in software engineering for cloud and big data. This book brings together work across different disciplines in software engineering, including work expanded from conference tracks and workshops led by the editors. - Discusses systematic and disciplined approaches to building software architectures for cloud and big data with state-of-the-art methods and techniques - Presents case studies involving enterprise, business, and government service deployment of big data applications - Shares guidance on theory, frameworks, methodologies, and architecture for cloud and big data
Smart Computing and Informatics
Author: Suresh Chandra Satapathy
Publisher: Springer
ISBN: 9811055475
Category : Technology & Engineering
Languages : en
Pages : 646
Book Description
This volume contains 68 papers presented at SCI 2016: First International Conference on Smart Computing and Informatics. The conference was held during 3-4 March 2017, Visakhapatnam, India and organized communally by ANITS, Visakhapatnam and supported technically by CSI Division V – Education and Research and PRF, Vizag. This volume contains papers mainly focused on smart computing for cloud storage, data mining and software analysis, and image processing.
Publisher: Springer
ISBN: 9811055475
Category : Technology & Engineering
Languages : en
Pages : 646
Book Description
This volume contains 68 papers presented at SCI 2016: First International Conference on Smart Computing and Informatics. The conference was held during 3-4 March 2017, Visakhapatnam, India and organized communally by ANITS, Visakhapatnam and supported technically by CSI Division V – Education and Research and PRF, Vizag. This volume contains papers mainly focused on smart computing for cloud storage, data mining and software analysis, and image processing.
Big Data Analytics Beyond Hadoop
Author: Vijay Srinivas Agneeswaran
Publisher: Pearson Education
ISBN: 0133837947
Category : Business & Economics
Languages : en
Pages : 235
Book Description
Master alternative Big Data technologies that can do what Hadoop can't: real-time analytics and iterative machine learning. When most technical professionals think of Big Data analytics today, they think of Hadoop. But there are many cutting-edge applications that Hadoop isn't well suited for, especially real-time analytics and contexts requiring the use of iterative machine learning algorithms. Fortunately, several powerful new technologies have been developed specifically for use cases such as these. Big Data Analytics Beyond Hadoop is the first guide specifically designed to help you take the next steps beyond Hadoop. Dr. Vijay Srinivas Agneeswaran introduces the breakthrough Berkeley Data Analysis Stack (BDAS) in detail, including its motivation, design, architecture, Mesos cluster management, performance, and more. He presents realistic use cases and up-to-date example code for: Spark, the next generation in-memory computing technology from UC Berkeley Storm, the parallel real-time Big Data analytics technology from Twitter GraphLab, the next-generation graph processing paradigm from CMU and the University of Washington (with comparisons to alternatives such as Pregel and Piccolo) Halo also offers architectural and design guidance and code sketches for scaling machine learning algorithms to Big Data, and then realizing them in real-time. He concludes by previewing emerging trends, including real-time video analytics, SDNs, and even Big Data governance, security, and privacy issues. He identifies intriguing startups and new research possibilities, including BDAS extensions and cutting-edge model-driven analytics. Big Data Analytics Beyond Hadoop is an indispensable resource for everyone who wants to reach the cutting edge of Big Data analytics, and stay there: practitioners, architects, programmers, data scientists, researchers, startup entrepreneurs, and advanced students.
Publisher: Pearson Education
ISBN: 0133837947
Category : Business & Economics
Languages : en
Pages : 235
Book Description
Master alternative Big Data technologies that can do what Hadoop can't: real-time analytics and iterative machine learning. When most technical professionals think of Big Data analytics today, they think of Hadoop. But there are many cutting-edge applications that Hadoop isn't well suited for, especially real-time analytics and contexts requiring the use of iterative machine learning algorithms. Fortunately, several powerful new technologies have been developed specifically for use cases such as these. Big Data Analytics Beyond Hadoop is the first guide specifically designed to help you take the next steps beyond Hadoop. Dr. Vijay Srinivas Agneeswaran introduces the breakthrough Berkeley Data Analysis Stack (BDAS) in detail, including its motivation, design, architecture, Mesos cluster management, performance, and more. He presents realistic use cases and up-to-date example code for: Spark, the next generation in-memory computing technology from UC Berkeley Storm, the parallel real-time Big Data analytics technology from Twitter GraphLab, the next-generation graph processing paradigm from CMU and the University of Washington (with comparisons to alternatives such as Pregel and Piccolo) Halo also offers architectural and design guidance and code sketches for scaling machine learning algorithms to Big Data, and then realizing them in real-time. He concludes by previewing emerging trends, including real-time video analytics, SDNs, and even Big Data governance, security, and privacy issues. He identifies intriguing startups and new research possibilities, including BDAS extensions and cutting-edge model-driven analytics. Big Data Analytics Beyond Hadoop is an indispensable resource for everyone who wants to reach the cutting edge of Big Data analytics, and stay there: practitioners, architects, programmers, data scientists, researchers, startup entrepreneurs, and advanced students.
Proceedings of the European Test and Telemetry Conference ettc2022
Author: The European Society of Telemetry
Publisher: BoD – Books on Demand
ISBN: 3756845354
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
The way we prepare and analyse tests has evolved, as well as the way we perform and conduct those tests. However, we all concluded that the face-to-face exchange could not be replaced by any digital event. The ettc2022 was the first in-person telemetry event since the outbreak of the pandemic in 2020. The conference presented a dense technical program of more than 40 high quality papers, merged in the Conference Proceedings. As always, you could find the latest and most promising methods here but also hardware and software ideas for the telemetry solutions of tomorrow.
Publisher: BoD – Books on Demand
ISBN: 3756845354
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
The way we prepare and analyse tests has evolved, as well as the way we perform and conduct those tests. However, we all concluded that the face-to-face exchange could not be replaced by any digital event. The ettc2022 was the first in-person telemetry event since the outbreak of the pandemic in 2020. The conference presented a dense technical program of more than 40 high quality papers, merged in the Conference Proceedings. As always, you could find the latest and most promising methods here but also hardware and software ideas for the telemetry solutions of tomorrow.
Intelligent Information and Database Systems
Author: Jeng-Shyang Pan
Publisher: Springer Science & Business Media
ISBN: 3642284892
Category : Computers
Languages : en
Pages : 593
Book Description
The three-volume set LNAI 7196, LNAI 7197 and LNAI 7198 constitutes the refereed proceedings of the 4th Asian Conference on Intelligent Information and Database Systems, ACIIDS 2012, held in Kaohsiung, Taiwan in March 2012. The 161 revised papers presented were carefully reviewed and selected from more than 472 submissions. The papers included cover the following topics: intelligent database systems, data warehouses and data mining, natural language processing and computational linguistics, semantic Web, social networks and recommendation systems, collaborative systems and applications, e-bussiness and e-commerce systems, e-learning systems, information modeling and requirements engineering, information retrieval systems, intelligent agents and multi-agent systems, intelligent information systems, intelligent internet systems, intelligent optimization techniques, object-relational DBMS, ontologies and knowledge sharing, semi-structured and XML database systems, unified modeling language and unified processes, Web services and semantic Web, computer networks and communication systems.
Publisher: Springer Science & Business Media
ISBN: 3642284892
Category : Computers
Languages : en
Pages : 593
Book Description
The three-volume set LNAI 7196, LNAI 7197 and LNAI 7198 constitutes the refereed proceedings of the 4th Asian Conference on Intelligent Information and Database Systems, ACIIDS 2012, held in Kaohsiung, Taiwan in March 2012. The 161 revised papers presented were carefully reviewed and selected from more than 472 submissions. The papers included cover the following topics: intelligent database systems, data warehouses and data mining, natural language processing and computational linguistics, semantic Web, social networks and recommendation systems, collaborative systems and applications, e-bussiness and e-commerce systems, e-learning systems, information modeling and requirements engineering, information retrieval systems, intelligent agents and multi-agent systems, intelligent information systems, intelligent internet systems, intelligent optimization techniques, object-relational DBMS, ontologies and knowledge sharing, semi-structured and XML database systems, unified modeling language and unified processes, Web services and semantic Web, computer networks and communication systems.
Foundation Models for Natural Language Processing
Author: Gerhard Paaß
Publisher: Springer Nature
ISBN: 3031231902
Category : Computers
Languages : en
Pages : 448
Book Description
This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI.
Publisher: Springer Nature
ISBN: 3031231902
Category : Computers
Languages : en
Pages : 448
Book Description
This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI.
GeoDirectory Products & Services Purchasing Guide
Author:
Publisher:
ISBN:
Category : Geographic information systems
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Geographic information systems
Languages : en
Pages :
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 2032
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 2032
Book Description