The Top Ten Algorithms in Data Mining

The Top Ten Algorithms in Data Mining PDF Author: Xindong Wu
Publisher: CRC Press
ISBN: 142008965X
Category : Business & Economics
Languages : en
Pages : 230

Get Book Here

Book Description
Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is wri

The Top Ten Algorithms in Data Mining

The Top Ten Algorithms in Data Mining PDF Author: Xindong Wu
Publisher: CRC Press
ISBN: 142008965X
Category : Business & Economics
Languages : en
Pages : 230

Get Book Here

Book Description
Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is wri

Contemporary Perspectives in Data Mining, Volume 2

Contemporary Perspectives in Data Mining, Volume 2 PDF Author: Kenneth D. Lawrence
Publisher: IAP
ISBN: 1681230895
Category : Mathematics
Languages : en
Pages : 237

Get Book Here

Book Description
The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner. Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted from this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups. Data mining applications are in marketing (customer loyalty, identifying profitable customers, instore promotions, e-commerce populations); in business (teaching data mining, efficiency of the Chinese automobile industry, moderate asset allocation funds); and techniques (veterinary predictive models, data integrity in the cloud, irregular pattern detection in a mobility network and road safety modeling.)

Machine Learning and Data Mining

Machine Learning and Data Mining PDF Author: Ryszad S. Michalski
Publisher: Wiley
ISBN: 9780471971993
Category : Computers
Languages : en
Pages : 472

Get Book Here

Book Description
Master the new computational tools to get the most out of your information system. This practical guide, the first to clearly outline the situation for the benefit of engineers and scientists, provides a straightforward introduction to basic machine learning and data mining methods, covering the analysis of numerical, text, and sound data.

Data Mining Methods and Models

Data Mining Methods and Models PDF Author: Daniel T. Larose
Publisher: John Wiley & Sons
ISBN: 0471756474
Category : Computers
Languages : en
Pages : 340

Get Book Here

Book Description
Apply powerful Data Mining Methods and Models to Leverage your Data for Actionable Results Data Mining Methods and Models provides: * The latest techniques for uncovering hidden nuggets of information * The insight into how the data mining algorithms actually work * The hands-on experience of performing data mining on large data sets Data Mining Methods and Models: * Applies a "white box" methodology, emphasizing an understanding of the model structures underlying the softwareWalks the reader through the various algorithms and provides examples of the operation of the algorithms on actual large data sets, including a detailed case study, "Modeling Response to Direct-Mail Marketing" * Tests the reader's level of understanding of the concepts and methodologies, with over 110 chapter exercises * Demonstrates the Clementine data mining software suite, WEKA open source data mining software, SPSS statistical software, and Minitab statistical software * Includes a companion Web site, www.dataminingconsultant.com, where the data sets used in the book may be downloaded, along with a comprehensive set of data mining resources. Faculty adopters of the book have access to an array of helpful resources, including solutions to all exercises, a PowerPoint(r) presentation of each chapter, sample data mining course projects and accompanying data sets, and multiple-choice chapter quizzes. With its emphasis on learning by doing, this is an excellent textbook for students in business, computer science, and statistics, as well as a problem-solving reference for data analysts and professionals in the field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available onlne.

Data Mining

Data Mining PDF Author: Ian H. Witten
Publisher: Elsevier
ISBN: 0080890369
Category : Computers
Languages : en
Pages : 665

Get Book Here

Book Description
Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

Business Modeling and Data Mining

Business Modeling and Data Mining PDF Author: Dorian Pyle
Publisher: Elsevier
ISBN: 0080500455
Category : Computers
Languages : en
Pages : 721

Get Book Here

Book Description
Business Modeling and Data Mining demonstrates how real world business problems can be formulated so that data mining can answer them. The concepts and techniques presented in this book are the essential building blocks in understanding what models are and how they can be used practically to reveal hidden assumptions and needs, determine problems, discover data, determine costs, and explore the whole domain of the problem. This book articulately explains how to understand both the strategic and tactical aspects of any business problem, identify where the key leverage points are and determine where quantitative techniques of analysis -- such as data mining -- can yield most benefit. It addresses techniques for discovering how to turn colloquial expression and vague descriptions of a business problem first into qualitative models and then into well-defined quantitative models (using data mining) that can then be used to find a solution. The book completes the process by illustrating how these findings from data mining can be turned into strategic or tactical implementations. · Teaches how to discover, construct and refine models that are useful in business situations· Teaches how to design, discover and develop the data necessary for mining · Provides a practical approach to mining data for all business situations· Provides a comprehensive, easy-to-use, fully interactive methodology for building models and mining data· Provides pointers to supplemental online resources, including a downloadable version of the methodology and software tools.

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques PDF Author: Jiawei Han
Publisher: Elsevier
ISBN: 0123814804
Category : Computers
Languages : en
Pages : 740

Get Book Here

Book Description
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Data Mining

Data Mining PDF Author: Hillol Kargupta
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 582

Get Book Here

Book Description
A state-of-the-art survey of recent advances in data mining or knowledge discovery.

Practical Applications of Data Mining

Practical Applications of Data Mining PDF Author: Sang Suh
Publisher: Jones & Bartlett Publishers
ISBN: 0763785873
Category : Computers
Languages : en
Pages : 436

Get Book Here

Book Description
Introduction to data mining -- Association rules -- Classification learning -- Statistics for data mining -- Rough sets and bayes theories -- Neural networks -- Clustering -- Fuzzy information retrieval.

Data Mining and Analysis

Data Mining and Analysis PDF Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 0521766338
Category : Computers
Languages : en
Pages : 607

Get Book Here

Book Description
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.