SAS and R

SAS and R PDF Author: Ken Kleinman
Publisher: CRC Press
ISBN: 1420070592
Category : Mathematics
Languages : en
Pages : 325

Get Book Here

Book Description
An All-in-One Resource for Using SAS and R to Carry out Common TasksProvides a path between languages that is easier than reading complete documentationSAS and R: Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in both SAS and R, without having to navigate through the extensive, id

Data Management and Statistical Analysis Techniques

Data Management and Statistical Analysis Techniques PDF Author: Ronin Myers
Publisher: Scientific e-Resources
ISBN: 1839473398
Category :
Languages : en
Pages : 299

Get Book Here

Book Description


Cryptanalysis of RSA and Its Variants

Cryptanalysis of RSA and Its Variants PDF Author: M. Jason Hinek
Publisher: CRC Press
ISBN: 1420075195
Category : Computers
Languages : en
Pages : 284

Get Book Here

Book Description
Thirty years after RSA was first publicized, it remains an active research area. Although several good surveys exist, they are either slightly outdated or only focus on one type of attack. Offering an updated look at this field, Cryptanalysis of RSA and Its Variants presents the best known mathematical attacks on RSA and its main variants, includin

Statistical Analysis of Management Data

Statistical Analysis of Management Data PDF Author: Hubert Gatignon
Publisher: Springer Science & Business Media
ISBN: 1441912703
Category : Business & Economics
Languages : en
Pages : 396

Get Book Here

Book Description
Statistical Analysis of Management Data provides a comprehensive approach to multivariate statistical analyses that are important for researchers in all fields of management, including finance, production, accounting, marketing, strategy, technology, and human resources. This book is especially designed to provide doctoral students with a theoretical knowledge of the concepts underlying the most important multivariate techniques and an overview of actual applications. It offers a clear, succinct exposition of each technique with emphasis on when each technique is appropriate and how to use it. This second edition, fully revised, updated, and expanded, reflects the most current evolution in the methods for data analysis in management and the social sciences. In particular, it places a greater emphasis on measurement models, and includes new chapters and sections on: confirmatory factor analysis canonical correlation analysis cluster analysis analysis of covariance structure multi-group confirmatory factor analysis and analysis of covariance structures. Featuring numerous examples, the book may serve as an advanced text or as a resource for applied researchers in industry who want to understand the foundations of the methods and to learn how they can be applied using widely available statistical software.

Using R for Data Management, Statistical Analysis, and Graphics

Using R for Data Management, Statistical Analysis, and Graphics PDF Author: Nicholas J. Horton
Publisher: CRC Press
ISBN: 1439827567
Category : Mathematics
Languages : en
Pages : 299

Get Book Here

Book Description
Quick and Easy Access to Key Elements of Documentation Includes worked examples across a wide variety of applications, tasks, and graphicsUsing R for Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in R, without having to navigate through the extensive, idiosyncratic, and sometimes

SAS and R

SAS and R PDF Author: Ken Kleinman
Publisher: CRC Press
ISBN: 1466584491
Category : Mathematics
Languages : en
Pages : 473

Get Book Here

Book Description
An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent Tasks The first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the Second Edition This edition now covers RStudio, a powerful and easy-to-use interface for R. It incorporates a number of additional topics, including using application program interfaces (APIs), accessing data through database management systems, using reproducible analysis tools, and statistical analysis with Markov chain Monte Carlo (MCMC) methods and finite mixture models. It also includes extended examples of simulations and many new examples. Enables Easy Mobility between the Two Systems Through the extensive indexing and cross-referencing, users can directly find and implement the material they need. SAS users can look up tasks in the SAS index and then find the associated R code while R users can benefit from the R index in a similar manner. Numerous example analyses demonstrate the code in action and facilitate further exploration. The datasets and code are available for download on the book’s website.

Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications PDF Author: Ken Yale
Publisher: Elsevier
ISBN: 0124166458
Category : Mathematics
Languages : en
Pages : 824

Get Book Here

Book Description
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Computational and Statistical Methods for Analysing Big Data with Applications

Computational and Statistical Methods for Analysing Big Data with Applications PDF Author: Shen Liu
Publisher: Academic Press
ISBN: 0081006519
Category : Mathematics
Languages : en
Pages : 208

Get Book Here

Book Description
Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate

Using SAS for Data Management, Statistical Analysis, and Graphics

Using SAS for Data Management, Statistical Analysis, and Graphics PDF Author: Ken Kleinman
Publisher: CRC Press
ISBN: 9781138469846
Category :
Languages : en
Pages :

Get Book Here

Book Description
Quick and Easy Access to Key Elements of Documentation Includes worked examples across a wide variety of applications, tasks, and graphics A unique companion for statistical coders, Using SAS for Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in SAS, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. Organized by short, clear descriptive entries, the book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, multivariate methods, and the creation of graphics. Through the extensive indexing, cross-referencing, and worked examples in this text, users can directly find and implement the material they need. The text includes convenient indices organized by topic and SAS syntax. Demonstrating the SAS code in action and facilitating exploration, the authors present example analyses that employ a single data set from the HELP study. They also provide several case studies of more complex applications. Data sets and code are available for download on the book�s website. Helping to improve your analytical skills, this book lucidly summarizes the features of SAS most often used by statistical analysts. New users of SAS will find the simple approach easy to understand while more expert SAS programmers will appreciate the invaluable source of task-oriented information.

A Guide to Clinical Drug Research

A Guide to Clinical Drug Research PDF Author: A. Cohen
Publisher: Springer Science & Business Media
ISBN: 9780792361718
Category : Medical
Languages : en
Pages : 232

Get Book Here

Book Description
Following the success of the first edition, published in 1995, this fully rewritten A Guide to Clinical Drug Research - Second Edition has been adapted to the most recent guidelines and developments in the field. It continues to provide a wealth of practical advice, ranging from the conception of an idea, planning a study and writing a protocol, through to the conduct of a study, data collection and analysis, and publication. It tells investigators what information they should expect sponsoring companies to provide, particularly when there is only limited information available about a new drug. It also explains what the company can expect of investigators, including the requirements of `good clinical practice'. Unlike other currently available texts on clinical trials and pharmaceutical medicine, A Guide to Clinical Drug Research concentrates on the needs of the practising clinician and research team. It is not restricted to drug investigation, and is relevant to all those involved in clinical research in a variety of settings. Audience: Required reading for clinical researchers and others involved as investigators in a drug project, often sponsored by a pharmacuetical company, plus agents of the sponsoring companies themselves.