Author: Dr. Raja Sarath Kumar Boddu
Publisher: Xoffencerpublication
ISBN: 9394707239
Category : Computers
Languages : en
Pages : 254
Book Description
Over the course of the last decade, the amount of data with which one must deal has skyrocketed to levels that are difficult to fathom, while at the same time, the cost of storing data has steadily decreased. Private firms and research organizations collect terabytes of data about their customers' interactions, commerce, and social media, as well as sensors from devices such as mobile phones and vehicles. This data is used for a variety of purposes, including marketing and advertising. Figuring out how to make sense of all this data is one of the most difficult challenges of our day. The analysis of large amounts of data comes into play at this point. Big Data Analytics entails, for the most part, the gathering of data from a variety of sources, the management of this data in such a manner that it can be utilized by analysts, and the delivery of data products that are beneficial to the organization's business.
DATA EXPLORATION AND DATA PREPARATION PHASE
Author: Dr. Raja Sarath Kumar Boddu
Publisher: Xoffencerpublication
ISBN: 9394707239
Category : Computers
Languages : en
Pages : 254
Book Description
Over the course of the last decade, the amount of data with which one must deal has skyrocketed to levels that are difficult to fathom, while at the same time, the cost of storing data has steadily decreased. Private firms and research organizations collect terabytes of data about their customers' interactions, commerce, and social media, as well as sensors from devices such as mobile phones and vehicles. This data is used for a variety of purposes, including marketing and advertising. Figuring out how to make sense of all this data is one of the most difficult challenges of our day. The analysis of large amounts of data comes into play at this point. Big Data Analytics entails, for the most part, the gathering of data from a variety of sources, the management of this data in such a manner that it can be utilized by analysts, and the delivery of data products that are beneficial to the organization's business.
Publisher: Xoffencerpublication
ISBN: 9394707239
Category : Computers
Languages : en
Pages : 254
Book Description
Over the course of the last decade, the amount of data with which one must deal has skyrocketed to levels that are difficult to fathom, while at the same time, the cost of storing data has steadily decreased. Private firms and research organizations collect terabytes of data about their customers' interactions, commerce, and social media, as well as sensors from devices such as mobile phones and vehicles. This data is used for a variety of purposes, including marketing and advertising. Figuring out how to make sense of all this data is one of the most difficult challenges of our day. The analysis of large amounts of data comes into play at this point. Big Data Analytics entails, for the most part, the gathering of data from a variety of sources, the management of this data in such a manner that it can be utilized by analysts, and the delivery of data products that are beneficial to the organization's business.
Data Preparation for Data Mining
Author: Dorian Pyle
Publisher: Morgan Kaufmann
ISBN: 9781558605299
Category : Computers
Languages : en
Pages : 566
Book Description
This book focuses on the importance of clean, well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance.
Publisher: Morgan Kaufmann
ISBN: 9781558605299
Category : Computers
Languages : en
Pages : 566
Book Description
This book focuses on the importance of clean, well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance.
Focusing Solutions for Data Mining
Author: Thomas Reinartz
Publisher: Springer
ISBN: 3540483160
Category : Computers
Languages : en
Pages : 317
Book Description
In the first part, this book analyzes the knowledge discovery process in order to understand the relations between knowledge discovery steps and focusing. The part devoted to the development of focusing solutions opens with an analysis of the state of the art, then introduces the relevant techniques, and finally culminates in implementing a unified approach as a generic sampling algorithm, which is then integrated into a commercial data mining system. The last part evaluates specific focusing solutions in various application domains. The book provides various appendicies enhancing easy accessibility. The book presents a comprehensive introduction to focusing in the context of data mining and knowledge discovery. It is written for researchers and advanced students, as well as for professionals applying data mining and knowledge discovery techniques in practice.
Publisher: Springer
ISBN: 3540483160
Category : Computers
Languages : en
Pages : 317
Book Description
In the first part, this book analyzes the knowledge discovery process in order to understand the relations between knowledge discovery steps and focusing. The part devoted to the development of focusing solutions opens with an analysis of the state of the art, then introduces the relevant techniques, and finally culminates in implementing a unified approach as a generic sampling algorithm, which is then integrated into a commercial data mining system. The last part evaluates specific focusing solutions in various application domains. The book provides various appendicies enhancing easy accessibility. The book presents a comprehensive introduction to focusing in the context of data mining and knowledge discovery. It is written for researchers and advanced students, as well as for professionals applying data mining and knowledge discovery techniques in practice.
Data Mining: Foundations and Practice
Author: Tsau Young Lin
Publisher: Springer Science & Business Media
ISBN: 354078487X
Category : Mathematics
Languages : en
Pages : 562
Book Description
The IEEE ICDM 2004 workshop on the Foundation of Data Mining and the IEEE ICDM 2005 workshop on the Foundation of Semantic Oriented Data and Web Mining focused on topics ranging from the foundations of data mining to new data mining paradigms. The workshops brought together both data mining researchers and practitioners to discuss these two topics while seeking solutions to long standing data mining problems and stimul- ing new data mining research directions. We feel that the papers presented at these workshops may encourage the study of data mining as a scienti?c ?eld and spark new communications and collaborations between researchers and practitioners. Toexpressthevisionsforgedintheworkshopstoawiderangeofdatam- ing researchers and practitioners and foster active participation in the study of foundations of data mining, we edited this volume by involving extended and updated versions of selected papers presented at those workshops as well as some other relevant contributions. The content of this book includes st- ies of foundations of data mining from theoretical, practical, algorithmical, and managerial perspectives. The following is a brief summary of the papers contained in this book.
Publisher: Springer Science & Business Media
ISBN: 354078487X
Category : Mathematics
Languages : en
Pages : 562
Book Description
The IEEE ICDM 2004 workshop on the Foundation of Data Mining and the IEEE ICDM 2005 workshop on the Foundation of Semantic Oriented Data and Web Mining focused on topics ranging from the foundations of data mining to new data mining paradigms. The workshops brought together both data mining researchers and practitioners to discuss these two topics while seeking solutions to long standing data mining problems and stimul- ing new data mining research directions. We feel that the papers presented at these workshops may encourage the study of data mining as a scienti?c ?eld and spark new communications and collaborations between researchers and practitioners. Toexpressthevisionsforgedintheworkshopstoawiderangeofdatam- ing researchers and practitioners and foster active participation in the study of foundations of data mining, we edited this volume by involving extended and updated versions of selected papers presented at those workshops as well as some other relevant contributions. The content of this book includes st- ies of foundations of data mining from theoretical, practical, algorithmical, and managerial perspectives. The following is a brief summary of the papers contained in this book.
Development Research in Practice
Author: Kristoffer Bjärkefur
Publisher: World Bank Publications
ISBN: 1464816956
Category : Business & Economics
Languages : en
Pages : 393
Book Description
Development Research in Practice leads the reader through a complete empirical research project, providing links to continuously updated resources on the DIME Wiki as well asillustrative examples from the Demand for Safe Spaces study. The handbook is intended to train users of development data how to handle data effectively, efficiently, and ethically.“In the DIME Analytics Data Handbook, the DIME team has produced an extraordinary public good: a detailed, comprehensive, yet easy-to-read manual for how to manage a data-oriented research project from beginning to end. It offers everything from big-picture guidance on the determinants of high-quality empirical research, to specific practical guidance on how to implement specific workflows—and includes computer code! I think it will prove durably useful to a broad range of researchers in international development and beyond, and I learned new practices that I plan on adopting in my own research group.”—Marshall Burke, Associate Professor, Department of Earth System Science, and Deputy Director, Center on Food Security and the Environment, Stanford University“Data are the essential ingredient in any research or evaluation project, yet there has been too little attention to standardized practices to ensure high-quality data collection, handling, documentation, and exchange. Development Research in Practice: The DIME Analytics Data Handbook seeks to fill that gap with practical guidance and tools, grounded in ethics and efficiency, for data management at every stage in a research project. This excellent resource sets a new standard for the field and is an essential reference for all empirical researchers.”—Ruth E. Levine, PhD, CEO, IDinsight“Development Research in Practice: The DIME Analytics Data Handbook is an important resource and a must-read for all development economists, empirical social scientists, and public policy analysts. Based on decades of pioneering work at the World Bank on data collection, measurement, and analysis, the handbook provides valuable tools to allow research teams to more efficiently and transparently manage their work flows—yielding more credible analytical conclusions as a result.”—Edward Miguel, Oxfam Professor in Environmental and Resource Economics and Faculty Director of the Center for Effective Global Action, University of California, Berkeley“The DIME Analytics Data Handbook is a must-read for any data-driven researcher looking to create credible research outcomes and policy advice. By meticulously describing detailed steps, from project planning via ethical and responsible code and data practices to the publication of research papers and associated replication packages, the DIME handbook makes the complexities of transparent and credible research easier.”—Lars Vilhuber, Data Editor, American Economic Association, and Executive Director, Labor Dynamics Institute, Cornell University
Publisher: World Bank Publications
ISBN: 1464816956
Category : Business & Economics
Languages : en
Pages : 393
Book Description
Development Research in Practice leads the reader through a complete empirical research project, providing links to continuously updated resources on the DIME Wiki as well asillustrative examples from the Demand for Safe Spaces study. The handbook is intended to train users of development data how to handle data effectively, efficiently, and ethically.“In the DIME Analytics Data Handbook, the DIME team has produced an extraordinary public good: a detailed, comprehensive, yet easy-to-read manual for how to manage a data-oriented research project from beginning to end. It offers everything from big-picture guidance on the determinants of high-quality empirical research, to specific practical guidance on how to implement specific workflows—and includes computer code! I think it will prove durably useful to a broad range of researchers in international development and beyond, and I learned new practices that I plan on adopting in my own research group.”—Marshall Burke, Associate Professor, Department of Earth System Science, and Deputy Director, Center on Food Security and the Environment, Stanford University“Data are the essential ingredient in any research or evaluation project, yet there has been too little attention to standardized practices to ensure high-quality data collection, handling, documentation, and exchange. Development Research in Practice: The DIME Analytics Data Handbook seeks to fill that gap with practical guidance and tools, grounded in ethics and efficiency, for data management at every stage in a research project. This excellent resource sets a new standard for the field and is an essential reference for all empirical researchers.”—Ruth E. Levine, PhD, CEO, IDinsight“Development Research in Practice: The DIME Analytics Data Handbook is an important resource and a must-read for all development economists, empirical social scientists, and public policy analysts. Based on decades of pioneering work at the World Bank on data collection, measurement, and analysis, the handbook provides valuable tools to allow research teams to more efficiently and transparently manage their work flows—yielding more credible analytical conclusions as a result.”—Edward Miguel, Oxfam Professor in Environmental and Resource Economics and Faculty Director of the Center for Effective Global Action, University of California, Berkeley“The DIME Analytics Data Handbook is a must-read for any data-driven researcher looking to create credible research outcomes and policy advice. By meticulously describing detailed steps, from project planning via ethical and responsible code and data practices to the publication of research papers and associated replication packages, the DIME handbook makes the complexities of transparent and credible research easier.”—Lars Vilhuber, Data Editor, American Economic Association, and Executive Director, Labor Dynamics Institute, Cornell University
Fundamentals of Data Science
Author: Sanjeev J. Wagh
Publisher: CRC Press
ISBN: 0429811470
Category : Business & Economics
Languages : en
Pages : 297
Book Description
Fundamentals of Data Science is designed for students, academicians and practitioners with a complete walkthrough right from the foundational groundwork required to outlining all the concepts, techniques and tools required to understand Data Science. Data Science is an umbrella term for the non-traditional techniques and technologies that are required to collect, aggregate, process, and gain insights from massive datasets. This book offers all the processes, methodologies, various steps like data acquisition, pre-process, mining, prediction, and visualization tools for extracting insights from vast amounts of data by the use of various scientific methods, algorithms, and processes Readers will learn the steps necessary to create the application with SQl, NoSQL, Python, R, Matlab, Octave and Tablue. This book provides a stepwise approach to building solutions to data science applications right from understanding the fundamentals, performing data analytics to writing source code. All the concepts are discussed in simple English to help the community to become Data Scientist without much pre-requisite knowledge. Features : Simple strategies for developing statistical models that analyze data and detect patterns, trends, and relationships in data sets. Complete roadmap to Data Science approach with dedicatedsections which includes Fundamentals, Methodology and Tools. Focussed approach for learning and practice various Data Science Toolswith Sample code and examples for practice. Information is presented in an accessible way for students, researchers and academicians and professionals.
Publisher: CRC Press
ISBN: 0429811470
Category : Business & Economics
Languages : en
Pages : 297
Book Description
Fundamentals of Data Science is designed for students, academicians and practitioners with a complete walkthrough right from the foundational groundwork required to outlining all the concepts, techniques and tools required to understand Data Science. Data Science is an umbrella term for the non-traditional techniques and technologies that are required to collect, aggregate, process, and gain insights from massive datasets. This book offers all the processes, methodologies, various steps like data acquisition, pre-process, mining, prediction, and visualization tools for extracting insights from vast amounts of data by the use of various scientific methods, algorithms, and processes Readers will learn the steps necessary to create the application with SQl, NoSQL, Python, R, Matlab, Octave and Tablue. This book provides a stepwise approach to building solutions to data science applications right from understanding the fundamentals, performing data analytics to writing source code. All the concepts are discussed in simple English to help the community to become Data Scientist without much pre-requisite knowledge. Features : Simple strategies for developing statistical models that analyze data and detect patterns, trends, and relationships in data sets. Complete roadmap to Data Science approach with dedicatedsections which includes Fundamentals, Methodology and Tools. Focussed approach for learning and practice various Data Science Toolswith Sample code and examples for practice. Information is presented in an accessible way for students, researchers and academicians and professionals.
Real Estate Analysis in the Information Age
Author: Kimberly Winson-Geideman
Publisher: Routledge
ISBN: 1315311127
Category : Business & Economics
Languages : en
Pages : 180
Book Description
The creation, accumulation, and use of copious amounts of data are driving rapid change across a wide variety of industries and academic disciplines. This ‘Big Data’ phenomenon is the result of recent developments in computational technology and improved data gathering techniques that have led to substantial innovation in the collection, storage, management, and analysis of data. Real Estate Analysis in the Information Age: Techniques for Big Data and Statistical Modeling focuses on the real estate discipline, guiding researchers and practitioners alike on the use of data-centric methods and analysis from applied and theoretical perspectives. In it, the authors detail the integration of Big Data into conventional real estate research and analysis. The book is process-oriented, not only describing Big Data and associated methods, but also showing the reader how to use these methods through case studies supported by supplemental online material. The running theme is the construction of efficient, transparent, and reproducible research through the systematic organization and application of data, both traditional and 'big'. The final chapters investigate legal issues, particularly related to those data that are publicly available, and conclude by speculating on the future of Big Data in real estate.
Publisher: Routledge
ISBN: 1315311127
Category : Business & Economics
Languages : en
Pages : 180
Book Description
The creation, accumulation, and use of copious amounts of data are driving rapid change across a wide variety of industries and academic disciplines. This ‘Big Data’ phenomenon is the result of recent developments in computational technology and improved data gathering techniques that have led to substantial innovation in the collection, storage, management, and analysis of data. Real Estate Analysis in the Information Age: Techniques for Big Data and Statistical Modeling focuses on the real estate discipline, guiding researchers and practitioners alike on the use of data-centric methods and analysis from applied and theoretical perspectives. In it, the authors detail the integration of Big Data into conventional real estate research and analysis. The book is process-oriented, not only describing Big Data and associated methods, but also showing the reader how to use these methods through case studies supported by supplemental online material. The running theme is the construction of efficient, transparent, and reproducible research through the systematic organization and application of data, both traditional and 'big'. The final chapters investigate legal issues, particularly related to those data that are publicly available, and conclude by speculating on the future of Big Data in real estate.
Data Analytics Applied to the Mining Industry
Author: Ali Soofastaei
Publisher: CRC Press
ISBN: 0429781768
Category : Computers
Languages : en
Pages : 238
Book Description
Data Analytics Applied to the Mining Industry describes the key challenges facing the mining sector as it transforms into a digital industry able to fully exploit process automation, remote operation centers, autonomous equipment and the opportunities offered by the industrial internet of things. It provides guidelines on how data needs to be collected, stored and managed to enable the different advanced data analytics methods to be applied effectively in practice, through use of case studies, and worked examples. Aimed at graduate students, researchers, and professionals in the industry of mining engineering, this book: Explains how to implement advanced data analytics through case studies and examples in mining engineering Provides approaches and methods to improve data-driven decision making Explains a concise overview of the state of the art for Mining Executives and Managers Highlights and describes critical opportunity areas for mining optimization Brings experience and learning in digital transformation from adjacent sectors
Publisher: CRC Press
ISBN: 0429781768
Category : Computers
Languages : en
Pages : 238
Book Description
Data Analytics Applied to the Mining Industry describes the key challenges facing the mining sector as it transforms into a digital industry able to fully exploit process automation, remote operation centers, autonomous equipment and the opportunities offered by the industrial internet of things. It provides guidelines on how data needs to be collected, stored and managed to enable the different advanced data analytics methods to be applied effectively in practice, through use of case studies, and worked examples. Aimed at graduate students, researchers, and professionals in the industry of mining engineering, this book: Explains how to implement advanced data analytics through case studies and examples in mining engineering Provides approaches and methods to improve data-driven decision making Explains a concise overview of the state of the art for Mining Executives and Managers Highlights and describes critical opportunity areas for mining optimization Brings experience and learning in digital transformation from adjacent sectors
Encyclopedia of Data Science and Machine Learning
Author: Wang, John
Publisher: IGI Global
ISBN: 1799892212
Category : Computers
Languages : en
Pages : 3296
Book Description
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Publisher: IGI Global
ISBN: 1799892212
Category : Computers
Languages : en
Pages : 3296
Book Description
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Big Data Analytics
Author: Arun K. Somani
Publisher: CRC Press
ISBN: 1351180320
Category : Computers
Languages : en
Pages : 414
Book Description
The proposed book will discuss various aspects of big data Analytics. It will deliberate upon the tools, technology, applications, use cases and research directions in the field. Chapters would be contributed by researchers, scientist and practitioners from various reputed universities and organizations for the benefit of readers.
Publisher: CRC Press
ISBN: 1351180320
Category : Computers
Languages : en
Pages : 414
Book Description
The proposed book will discuss various aspects of big data Analytics. It will deliberate upon the tools, technology, applications, use cases and research directions in the field. Chapters would be contributed by researchers, scientist and practitioners from various reputed universities and organizations for the benefit of readers.