Data-Driven Modelling with Fuzzy Sets

Data-Driven Modelling with Fuzzy Sets PDF Author: Said Broumi
Publisher: CRC Press
ISBN: 1040043062
Category : Computers
Languages : en
Pages : 348

Get Book Here

Book Description
Zadeh introduced in 1965 the theory of fuzzy sets, in which truth values are modelled by numbers in the unit interval [0, 1], for tackling mathematically the frequently appearing in everyday life partial truths. In a second stage, when membership functions were reinterpreted as possibility distributions, fuzzy sets were extensively used to embrace uncertainty modelling. Uncertainty is defined as the shortage of precise knowledge or complete information and possibility theory is devoted to the handling of incomplete information. Zadeh articulated the relationship between possibility and probability, noticing that what is probable must preliminarily be possible. Following the Zadeh’s fuzzy set, various generalizations (intuitionistic, neutrosophic, rough, soft sets, etc.) have been introduced enabling a more effective management of all types of the existing in real world uncertainty. This book presents recent theoretical advances and applications of fuzzy sets and their extensions to Science, Humanities and Education. This book: Presents a qualitative assessment of big data in the education sector using linguistic Quadri partitioned single valued neutrosophic soft sets. Showcases application of n-cylindrical fuzzy neutrosophic sets in education using neutrosophic affinity degree and neutrosophic similarity Index. Covers scientific evaluation of student academic performance using single value neutrosophic Markov chain. Illustrates multi-granulation single-valued neutrosophic probabilistic rough sets for teamwork assessment. Examines estimation of distribution algorithm based on multiple attribute group decision-making to evaluate teaching quality. It is primarily written for Senior undergraduate and graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer science and engineering.

Data-Driven Modelling with Fuzzy Sets

Data-Driven Modelling with Fuzzy Sets PDF Author: Said Broumi
Publisher: CRC Press
ISBN: 1040043062
Category : Computers
Languages : en
Pages : 348

Get Book Here

Book Description
Zadeh introduced in 1965 the theory of fuzzy sets, in which truth values are modelled by numbers in the unit interval [0, 1], for tackling mathematically the frequently appearing in everyday life partial truths. In a second stage, when membership functions were reinterpreted as possibility distributions, fuzzy sets were extensively used to embrace uncertainty modelling. Uncertainty is defined as the shortage of precise knowledge or complete information and possibility theory is devoted to the handling of incomplete information. Zadeh articulated the relationship between possibility and probability, noticing that what is probable must preliminarily be possible. Following the Zadeh’s fuzzy set, various generalizations (intuitionistic, neutrosophic, rough, soft sets, etc.) have been introduced enabling a more effective management of all types of the existing in real world uncertainty. This book presents recent theoretical advances and applications of fuzzy sets and their extensions to Science, Humanities and Education. This book: Presents a qualitative assessment of big data in the education sector using linguistic Quadri partitioned single valued neutrosophic soft sets. Showcases application of n-cylindrical fuzzy neutrosophic sets in education using neutrosophic affinity degree and neutrosophic similarity Index. Covers scientific evaluation of student academic performance using single value neutrosophic Markov chain. Illustrates multi-granulation single-valued neutrosophic probabilistic rough sets for teamwork assessment. Examines estimation of distribution algorithm based on multiple attribute group decision-making to evaluate teaching quality. It is primarily written for Senior undergraduate and graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer science and engineering.

Shale Analytics

Shale Analytics PDF Author: Shahab D. Mohaghegh
Publisher: Springer
ISBN: 3319487531
Category : Technology & Engineering
Languages : en
Pages : 292

Get Book Here

Book Description
This book describes the application of modern information technology to reservoir modeling and well management in shale. While covering Shale Analytics, it focuses on reservoir modeling and production management of shale plays, since conventional reservoir and production modeling techniques do not perform well in this environment. Topics covered include tools for analysis, predictive modeling and optimization of production from shale in the presence of massive multi-cluster, multi-stage hydraulic fractures. Given the fact that the physics of storage and fluid flow in shale are not well-understood and well-defined, Shale Analytics avoids making simplifying assumptions and concentrates on facts (Hard Data - Field Measurements) to reach conclusions. Also discussed are important insights into understanding completion practices and re-frac candidate selection and design. The flexibility and power of the technique is demonstrated in numerous real-world situations.

Data-Driven Model-Free Controllers

Data-Driven Model-Free Controllers PDF Author: Radu-Emil Precup
Publisher: CRC Press
ISBN: 1000519635
Category : Technology & Engineering
Languages : en
Pages : 461

Get Book Here

Book Description
This book categorizes the wide area of data-driven model-free controllers, reveals the exact benefits of such controllers, gives the in-depth theory and mathematical proofs behind them, and finally discusses their applications. Each chapter includes a section for presenting the theory and mathematical definitions of one of the above mentioned algorithms. The second section of each chapter is dedicated to the examples and applications of the corresponding control algorithms in practical engineering problems. This book proposes to avoid complex mathematical equations, being generic as it includes several types of data-driven model-free controllers, such as Iterative Feedback Tuning controllers, Model-Free Controllers (intelligent PID controllers), Model-Free Adaptive Controllers, model-free sliding mode controllers, hybrid model‐free and model‐free adaptive‐Virtual Reference Feedback Tuning controllers, hybrid model-free and model-free adaptive fuzzy controllers and cooperative model-free controllers. The book includes the topic of optimal model-free controllers, as well. The optimal tuning of model-free controllers is treated in the chapters that deal with Iterative Feedback Tuning and Virtual Reference Feedback Tuning. Moreover, the extension of some model-free control algorithms to the consensus and formation-tracking problem of multi-agent dynamic systems is provided. This book can be considered as a textbook for undergraduate and postgraduate students, as well as a professional reference for industrial and academic researchers, attracting the readers from both industry and academia.

Hydrological Data Driven Modelling

Hydrological Data Driven Modelling PDF Author: Renji Remesan
Publisher: Springer
ISBN: 3319092359
Category : Science
Languages : en
Pages : 261

Get Book Here

Book Description
This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis. Advanced computing offers a range of new options for hydrologic modeling with the help of mathematical and data-based approaches like wavelets, neural networks, fuzzy logic, and support vector machines. Recently machine learning/artificial intelligence techniques have come to be used for time series modeling. However, though initial studies have shown this approach to be effective, there are still concerns about their accuracy and ability to make predictions on a selected input space.

Data-Driven Evolutionary Modeling in Materials Technology

Data-Driven Evolutionary Modeling in Materials Technology PDF Author: Nirupam Chakraborti
Publisher: CRC Press
ISBN: 1000635821
Category : Technology & Engineering
Languages : en
Pages : 319

Get Book Here

Book Description
Due to efficacy and optimization potential of genetic and evolutionary algorithms, they are used in learning and modeling especially with the advent of big data related problems. This book presents the algorithms and strategies specifically associated with pertinent issues in materials science domain. It discusses the procedures for evolutionary multi-objective optimization of objective functions created through these procedures and introduces available codes. Recent applications ranging from primary metal production to materials design are covered. It also describes hybrid modeling strategy, and other common modeling and simulation strategies like molecular dynamics, cellular automata etc. Features: Focuses on data-driven evolutionary modeling and optimization, including evolutionary deep learning. Include details on both algorithms and their applications in materials science and technology. Discusses hybrid data-driven modeling that couples evolutionary algorithms with generic computing strategies. Thoroughly discusses applications of pertinent strategies in metallurgy and materials. Provides overview of the major single and multi-objective evolutionary algorithms. This book aims at Researchers, Professionals, and Graduate students in Materials Science, Data-Driven Engineering, Metallurgical Engineering, Computational Materials Science, Structural Materials, and Functional Materials.

Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering

Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering PDF Author: Shahab Araghinejad
Publisher: Springer Science & Business Media
ISBN: 9400775067
Category : Science
Languages : en
Pages : 299

Get Book Here

Book Description
“Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering” provides a systematic account of major concepts and methodologies for data-driven models and presents a unified framework that makes the subject more accessible to and applicable for researchers and practitioners. It integrates important theories and applications of data-driven models and uses them to deal with a wide range of problems in the field of water resources and environmental engineering such as hydrological forecasting, flood analysis, water quality monitoring, regionalizing climatic data, and general function approximation. The book presents the statistical-based models including basic statistical analysis, nonparametric and logistic regression methods, time series analysis and modeling, and support vector machines. It also deals with the analysis and modeling based on artificial intelligence techniques including static and dynamic neural networks, statistical neural networks, fuzzy inference systems, and fuzzy regression. The book also discusses hybrid models as well as multi-model data fusion to wrap up the covered models and techniques. The source files of relatively simple and advanced programs demonstrating how to use the models are presented together with practical advice on how to best apply them. The programs, which have been developed using the MATLAB® unified platform, can be found on extras.springer.com. The main audience of this book includes graduate students in water resources engineering, environmental engineering, agricultural engineering, and natural resources engineering. This book may be adapted for use as a senior undergraduate and graduate textbook by focusing on selected topics. Alternatively, it may also be used as a valuable resource book for practicing engineers, consulting engineers, scientists and others involved in water resources and environmental engineering.

Hagenberg Research

Hagenberg Research PDF Author: Bruno Buchberger
Publisher: Springer Science & Business Media
ISBN: 3642021271
Category : Computers
Languages : en
Pages : 490

Get Book Here

Book Description
BrunoBuchberger This book is a synopsis of basic and applied research done at the various re search institutions of the Softwarepark Hagenberg in Austria. Starting with 15 coworkers in my Research Institute for Symbolic Computation (RISC), I initiated the Softwarepark Hagenberg in 1987 on request of the Upper Aus trian Government with the objective of creating a scienti?c, technological, and economic impulse for the region and the international community. In the meantime, in a joint e?ort, the Softwarepark Hagenberg has grown to the current (2009) size of over 1000 R&D employees and 1300 students in six research institutions, 40 companies and 20 academic study programs on the bachelor, master’s and PhD level. The goal of the Softwarepark Hagenberg is innovation of economy in one of the most important current technologies: software. It is the message of this book that this can only be achieved and guaranteed long term by “watering the root”, namely emphasis on research, both basic and applied. In this book, we summarize what has been achieved in terms of research in the various research institutions in the Softwarepark Hagenberg and what research vision we have for the imminent future. When I founded the Softwarepark Hagenberg, in addition to the “watering the root” principle, I had the vision that such a technology park can only prosper if we realize the “magic triangle”, i.e. the close interaction of research, academic education, and business applications at one site, see Figure 1.

Practical Hydroinformatics

Practical Hydroinformatics PDF Author: Robert J. Abrahart
Publisher: Springer Science & Business Media
ISBN: 3540798811
Category : Science
Languages : en
Pages : 495

Get Book Here

Book Description
Hydroinformatics is an emerging subject that is expected to gather speed, momentum and critical mass throughout the forthcoming decades of the 21st century. This book provides a broad account of numerous advances in that field - a rapidly developing discipline covering the application of information and communication technologies, modelling and computational intelligence in aquatic environments. A systematic survey, classified according to the methods used (neural networks, fuzzy logic and evolutionary optimization, in particular) is offered, together with illustrated practical applications for solving various water-related issues. ...

Computational Models of Risks to Infrastructure

Computational Models of Risks to Infrastructure PDF Author: Dejan Skanata
Publisher: IOS Press
ISBN: 1586037668
Category : Business & Economics
Languages : en
Pages : 340

Get Book Here

Book Description
Deals with programs of infrastructure risk. This title focuses on following issues such as: the state-of-the-art and practice, gaps between the arts and practices, ways to bridge the gaps, and future research directions.

Information Theory and Artificial Intelligence to Manage Uncertainty in Hydrodynamic and Hydrological Models

Information Theory and Artificial Intelligence to Manage Uncertainty in Hydrodynamic and Hydrological Models PDF Author: Abebe Andualem Jemberie
Publisher: CRC Press
ISBN: 1482284030
Category : Science
Languages : en
Pages : 198

Get Book Here

Book Description
The complementary nature of physically-based and data-driven models in their demand for physical insight and historical data, leads to the notion that the predictions of a physically-based model can be improved and the associated uncertainty can be systematically reduced through the conjunctive use of a data-driven model of the residuals. The objective of this thesis is to minimise the inevitable mismatch between physically-based models and the actual processes as described by the mismatch between predictions and observations. The complementary modelling approach is applied to various hydrodynamic and hydrological models.